B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101 (BACKLOG)/2019

Prove that $\int_{1}^{2} \int_{0}^{\pi} \sin(x+y) dx dy = 2$. (b)

6 + 6 = 12

- 9. (a) Find the directional derivative of the scalar point function $f(x,y,z) = x^2 + xy + z^2$ at the point A = (1, -1, -1) in the direction of $A\vec{B}$ where, B has coordinates (3, 2, 1).
 - A vector field \vec{F} is given by $\vec{F} = (\sin y)\hat{i} + x(1 + \cos y)\hat{j}$. Evaluate the line (b) integral $\vec{F}.d\vec{r}$, where, Γ is the circular path given by $x^2 + y^2 = a^2$.

6 + 6 = 12

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1st SEM/MATH 1101 (BACKLOG)/2019

MATHEMATICS - I (MATH 1101)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$ The matrix $\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}$ is (i) (a) symmetric (b) skew-symmetric (d) orthogonal. (c) singular The two eigenvalues of the matrix (ii) $A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ are 2 and -2. The third eigenvalue is (a) 1 (b) 0 (c) 3 (d) 2. If Rolle's theorem is applicable to $f(x) = x(x^2 - 1)$ in [0, 1], then c =(iii) (c) $-\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{3}}$. (a) 1 (b) 0 In the MVT $f(h) = f(0) + hf'(\theta h); 0 < \theta < 1$, if $f(x) = \frac{1}{1+x}$ and h = 3, then the (iv) value of θ is (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{1}{2}$. (a) 1 (v) $f(x,y) = \frac{\sqrt{y} + \sqrt{x}}{y+x}$ is a homogeneous function of degree (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) 1 (d) 2. **MATH 1101** 1

4

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1st SEM/MATH 1101 (BACKLOG)/2019
(vi)
$$\int_{0}^{\frac{\pi}{2}} \cos^{6} x dx =$$

(a) $\frac{7\pi}{12}$ (b) $\frac{5\pi}{32}$ (c) $\frac{\pi}{32}$ (d) $\frac{3\pi}{16}$.
(vii) If $u(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$, then the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is
(a) 0 (b) $2u(x,y)$ (c) $u(x,y)$ (d) 1.
(viii) If $y = e^{-x}$, then y_n is
(a) e^{-x} (b) $(-1)^n$ (c) $(-1)^n e^{-x}$ (d) 0.
(ix) The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if

(a)
$$p \ge 1$$
 (b) $p \le 1$ (c) $p > 1$ (d) $p < 1$

(x) The value of $\int_{c} (xdx - dy)$ where C is a line joining (0, 1) to (1, 0) is (a) 0 (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$.

Group – B

- 2. (a) Without expanding prove that $\begin{vmatrix}
 1 & \alpha & \alpha^2 - \beta\gamma \\
 1 & \beta & \beta^2 - \gamma\alpha \\
 1 & \gamma & \gamma^2 - \alpha\beta
 \end{vmatrix} = 0$
 - (b) Solve by Cramer's rule: x+y+z=1 ax+by+cz=k $a^{2}x+b^{2}y+c^{2}z=k^{2}$
- 3. (a) Investigate for which values of λ and μ the following system of equations:

x+2y+3z=6x+3y+5z=9

$$2x+5y+\lambda z=\mu$$

has (i) no solution, (ii) unique solution, (iii) infinite number of solutions.

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101 (BACKLOG)/2019

(b) If $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}$ then verify that A satisfies its own characteristic equation. Hence find A⁻¹. 6 + 6 = 12

Group – C

- 4. (a) Verify Rolle's theorem for the following function: $f(x) = \sin x$ in $[0, \pi]$.
 - (b) Use mean value theorem to prove the following inequality: $0 < \frac{1}{x} \log_{e} \frac{e^{x} - 1}{x} < 1.$ 6 + 6 = 12

5. (a) Show that the series
$$\frac{1}{1^2+1} + \frac{1}{2^2+1} + \frac{1}{3^2+1} + \dots \cos is$$
 convergent.
(b) Test the convergence of the series $\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left(\frac{1.2.3}{3.5.7}\right)^2 + \dots \cos \infty$.
 $6 + 6 = 12$

Group - D

6. (a) If
$$z = e^{ax+by}f(ax-by)$$
, show that $b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y} = 2abz$

(b) Verify Euler's theorem for the function
$$f(x,y) = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$$
.
6 + 6 = 12

7. (a) If
$$u = f(x - y, y - z, z - x)$$
, then prove that $u_x + u_y + u_z = 0$

(b) If
$$x = r\cos\theta$$
, $y = r\sin\theta$, find $\frac{\partial(x,y)}{\partial(r,\theta)}$ and $\frac{\partial(1,\theta)}{\partial(x,y)}$.
6+6=12

Group – E

8. (a) Evaluate $\int_{c}^{c} \{(2y+3)dx + xzdy + (yz-x)dz\}$, where, C is the arc of the curve $x = 2t^2$, y = t, $z = t^3$ from the point (0,0,0) to the point (2,1,1).

MATH 1101

2

MATH 1101

6 + 6 = 12

3