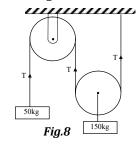

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MECH 1101 (BACKLOG)/2019

(b) With neat sketch, explain stress-strain diagram for a ductile material.


7 + 5 = 12

Group – E

- 8. (a) The position co-ordinate of a particle which is confined to move in a straight line is given by $S = 2t^3 24t + 6$, where, S is in meters and t is in sec. Determine
 - (i) the time required for the particle to reach a velocity of 72 m/s from its initial condition at t = 0
 - (ii) the acceleration of the particle when v = 30 m/s
 - (iii) the net displacement of the particle during the interval from t = 1 sec to t = 4 secs.
 - (b) A projectile is launched with an initial speed of 200 m/s at an angle of 60° with respect to the horizontal as shown in Fig.7. Compute the range R as measured up the incline.

- 9. (a) Explain D'Alembert's principle.
 - (b) Determine the tension in the strings and accelerations of two blocks of masses 150 kg and 50 kg connected by a string and a frictionless, weightless pulley as shown in Fig.8.

3	+	9	=	12
		,	_	

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1st SEM/MECH 1101 (BACKLOG)/2019

ENGINEERING MECHANICS (MECH 1101)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				10 × 1 = 10	
	(i)	The angle betwo (a) 180°	een $(\hat{i} + \hat{j})$ and $(-\hat{j} + \hat{i})$ i (b) zero	s (c) 270°	(d) 90°.	
	(ii)	Given $\vec{F}_1 = -2\hat{j} + 3\hat{k}$ and $\vec{F}_2 = 3\hat{i} - 5\hat{k}$. The magnitude of the scalar product of these vectors is				
		(a) -15	(b) -9	(c) 13	(d) 15.	
	(iii)	To solve equilibrium problem, if the total unknowns are 3 then at least how many equations or conditions are required?				
		(a) 4	(b) 1	(c) 2	(d) 3.	
	(iv)	A force 50 kN is acting along a direction 30° inclined with positive x axis. The magnitude of y component of the force is				
		(a) 25	(b) 50 N	(c) 25 kN	(d) 100√3 kN.	
	(v)	The general relation between coefficient of static friction (μ_s) and coefficient of kinetic friction (μ_k) is			friction (μ_s) and	
		(a) $\mu_s = \mu_k$	(b) $\mu_{s} > \mu_{k}$	(c) $\mu_s < \mu_k$	(d) all of these.	
	(vi)	The centroidal distance of a semicircular area of radius <i>r</i> from the base is			from the base is	
		(a) $\frac{4r}{3\pi}$	(b) $\frac{2r}{3\pi}$	(c) $\frac{3r}{2\pi}$	(d) <i>r</i> .	
	(vii)	Moment of inertia of a rectangle of base <i>b</i> and height <i>h</i> about the centroidal axis parallel to base is				
			hh^3	hh^3	bh^3	

(a)
$$\frac{bh^3}{36}$$
 (b) $\frac{bh^3}{12}$ (c) $\frac{bh^3}{3}$ (d) $\frac{bh^3}{4}$

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MECH 1101 (BACKLOG)/2019

(viii)	Hooke's law for ductile materials is valid within				
	(a) proportional limit	(b) elastic limit			
	(c) ultimate strength	(d) breaking point.			

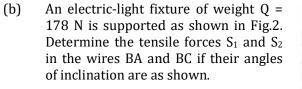
(ix) Equation of motion of a particle is $s = t^3 - t^2 - 500$, where, *s* is displacement in meters and t is time in seconds. Acceleration of the particle after 1 second will be

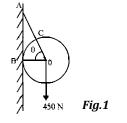
(a)
$$4 \text{ m/s}^2$$
 (b) 9 m/s^2 (c) 10 m/s^2 (d) 5 m/s^2 .

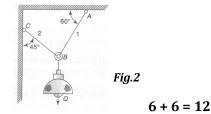
(x) A projectile is fired at an angle θ to the vertical. Its horizontal range will be maximum when θ is

(a) 0° (b) 30° (c) 45° (d) 60° .

Group – B

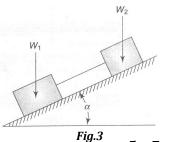

- 2. (a) State and prove Varignon's theorem for concurrent forces.
 - (b) A moment vector of magnitude 200 Nm acts through the points (-3, 0, 0) and (0, -4, 5). Find the vector expression for the moment.


6 + 6 = 12

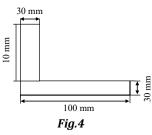

- 3. (a) Explain following vectors:(i) Equal vector (ii) Equivalent vector and (iii) Position vector.
 - (b) A force $\vec{F} = (15\vec{i} 2\vec{j} + 5\vec{k})N$ acts at a point A whose coordinates are (1, -2, -3). Co-ordinate distances are in meters. Compute moment of force about origin. (3 × 2) + 6 = 12

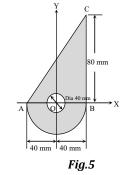
Group – C

4. (a) Determine the tension in the tie rod AC = 150 mm when a circular roller of weight Q = 450 N and radius r = 75 mm is resting against a smooth vertical wall at B as shown in Fig.1.



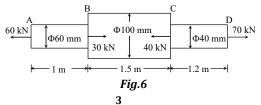
B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1st SEM/MECH 1101 (BACKLOG)/2019


- 5. (a) State and prove Lami's theorem.
 - (b) Two blocks of weights W_1 and W_2 rest on a rough inclined plane and are connected by a short piece of string as shown in Fig.3. If the coefficients of friction are $\mu_1 = 0.2$ and $\mu_2 = 0.3$, respectively, find the angle of inclination of the plane for which sliding will impend. Assume $W_1 = W_2 = 22.25$ N.



Group – D

6. (a) Locate the centroid of the L section as shown in Fig.4.



(b) Determine the moment of inertia of the shaded area with respect to the x axis as shown in Fig.5.

6 + 6 = 12

7. (a) A bar of variable cross-sectional areas as shown in Fig.6 is subjected to different forces. Find the total elongation of the bar. Take $E = 2 \times 10^5 \text{ N/nm}^2$:

MECH 1101