SPECIAL SUPPLE B.TECH/CSE/8TH SEM/CSEN 4262/2018

IMAGE PROCESSING (CSEN 4262)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

	Group – A (Multiple Choice Type Questions)		
1.	Cho	ose the correct alternative for the following:	$10 \times 1 = 10$
	(i)	An image is considered to be a function of f(x (a) height of image (c) amplitude of image	(b) where f represents (b) width of image (d) resolution of image.
	(ii)	Sampling of an image is required for (a) quantization (c) smoothing	(b) sharpening (d) digitization.
	(iii)	An image function $f(x, y)$ is characterized by $f(x, y) < 1 & 0 < r(x, y) < \infty$ (b) $0 < i(x, y) < 1 & 0 < r(x, y) < 1$ (c) $0 < i(x, y) < \infty & 0 < r(x, y) < \infty$ (d) $0 < i(x, y) < \infty & 0 < r(x, y) < 1$.	f(x, y) = i(x, y)r(x, y) where
	(iv)	In 8-distance measurement system distance corner pixel is (a) 2 unit (c) 1 unit	between centre pixel and a (b) √2 unit (d) 1.5 unit.
	(v)	Median filter is used to remove (a) salt-and-pepper noise (c) periodic noise	(b) Speckle noise(d) Gaussian noise.
	(vi)	Segmentation is a process that partitions image (a) blocks (c) pixels	nge into (b) regions (d) vertices.

1

CSEN 4262

SPECIAL SUPPLE B.TECH /CSE/8TH SEM/CSEN 4262/2018

- (vii) The D_4 distance (city block distance) between p and q with coordinates (x, y), (s, t) is defined as
 - (a) |x-s|+|y-t|

(b) $\max(|x-s|, |y-t|)$

(c) $[(x-s)2+(y-t)2]\frac{1}{2}$

- (d) min(|x-s|, |y-t|).
- (viii) An image of size 1024×1024 pixels in which the intensity of each pixel is an 8 bit quantity requires the storage space (if not compressed)
 - (a) 1 KB

(b) 1 MB

(c) 2 KB

- (d) 2 MB.
- (ix) Image restoration techniques are
 - (a) objective
 - (b) subjective
 - (c) objective and based on mathematical or probabilistic model
 - (d) subjective and based on mathematical or probabilistic model.
- (x) Dilation-Morphological image operation technique is used to
 - (a) shrink brighter areas of the image
 - (b) diminishes intensity variation over the image
 - (c) expands brighter areas of the image
 - (d) scales pixel intensity uniformly.

Group - B

- 2. (a) What are the various steps in image processing? Explain briefly.
 - (b) What do you mean by neighbours of a pixel? Define 4, 8 adjacency of pixels in a gray scale image.
 - (c) Explain the following terms with respect to digital image capturing:
 - (i) Sampling
 - (ii)Quantization

$$4 + (1 + 3) + (2 + 2) = 12$$

- 3. (a) Write down some of the applications of Image processing?
 - (b) Define city Euclidean distance, block distance and chess board distance.
 - (c) Explain image addition and subtraction with example. What are the applications of those two?

$$2 + (2 + 2 + 2) + (2 + 2) = 12$$

CSEN 4262

Group - C

- 4. (a) Define histogram?
 - (b) Perform histogram equalization of the following image:

1 3 5 4 4 3

5 2 2

(c) Explain image negative with suitable example.

$$2 + 6 + 4 = 12$$

- 5. (a) What do you mean by salt and pepper noise? Justify the statement "Median filter is an effective tool to minimise salt-and-pepper noise" through an illustration.
 - (b) What is spatial filtering? Differentiate linear spatial filter and non-linear spatial filter.
 - (c) Explain high boost filtering.

$$(2+4)+(1+2)+3=12$$

Group - D

- 6. (a) Discuss about the model of the image degradation/restoration process.
 - (b) Write down short notes on order statistics filters.

$$6 + 6 = 12$$

- 7. (a) Write down differences between lossless and lossy image compression?
 - (b) Calculate the Huffman code for the following symbol whose probability of occurrence is given below:

Symbol	Probability
a	0.4
b	0.3
С	0.2
d	0.1

Show that the Huffman code is not unique for the above example.

$$3 + (6 + 3) = 12$$

Group - E

- 8. (a) Explain dilation and erosion process with example?
 - (b) Explain the following morphological algorithms
 - (i) Thinning
 - (ii) Thickening.

$$(2+2)+(4+4)=12$$

- 9. (a) Explain Sobel, Roberts, Prewitt operator for edge detection.
 - (b) Explain split and merge algorithm for segmentation.

$$6 + 6 = 12$$

CSEN 4262

4