SPECIAL SUPPLE B.TECH/CSE/IT/7TH SEM/MATH 4181/2018

OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES (MATH 4181)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choo	se the correct alte	ernative for the	e follo	wing:		$10 \times 1 = 1$	10
	(i)	The set <i>S</i> given by (a) convex (c) non-convex	$y S = \{(x, y): x\}$	$x^2 + y$	y ² ≤ 25, x	$(x, y \in \mathbb{R})$ is (b) open (d) unbound	ded.	
	(ii)	Any solution to a the non-negativit (a) unbounded so (c) feasible solution	n L.P.P. (Linea cy restrictions olution ion	r Pro of the	gramming 2 L.P.P. is c	g Problem) v alled its (b) optimal (d) basic so	vhich satis solution lution.	fies
	(iii)	When total suppl the problem is sa (a) degenerate (c) balanced	y is equal to to id to be	otal de	emand in	a transporta (b) unbalan (d) non-deg	tion problection ced enerate.	em,
	(iv)	The feasible regio (a) convex (c) open	on of an L.P.P.	is		(b) non-con (d) unbound	vex ded.	
	(v)	Assignment prob (a) North West C (c) Vogel's Appro	lem is solved l orner Rule oximation Metl	by hod		(b) Simplex (d) Hungari	Method an Method	l.
	(vi)	When the primal problem has a degenerate optimal solution, then the dual has(a) degenerate solutions(b) infeasible solutions(c) unbounded solutions(d) multiple optimal solutions.						
МАТ	(vii) H 4181	In a fair game the (a) 1	e value of the g (b) 0	game i	s (c) unbou	ınded	(d) 2.

SPECIAL SUPPLE B.TECH/CSE/IT/7TH SEM/MATH 4181/2018

- (viii) The function $f(x, y) = x^2 y^2$ has, at point (0, 0)
 - (a) global maximum (c) neither maximum nor minimum

(b) global minimum (d) local minimum.

The Hessian matrix of a function f(x, y, z) is (ix)

$$H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

If the function had a stationary point, this would be

(a) a global maximum point

(b) a global minimum point

(c) a saddle point

(d) a global maximum point.

- Which of the following elimination methods is most efficient to find the (x) local optima of an unimodal function of one variable
 - (a) Golden section method

(b) Fibonacci Method

(c) Interval Halving

(d) Dichotomous Search.

Group - B

2. Solve the following linear programming problem by graphical method: (a) Maximize z = x + 2ySubject to

$$\begin{aligned} -x + 2y &\leq 8\\ x + 2y &\leq 12 \end{aligned}$$

$$\begin{array}{l} x - y \leq 3 \\ x, \ y \geq 0 \end{array}$$

Use Simplex method to solve the following linear programming problem: (b)Maximize $z = 60x_1 + 50x_2$ Subject to

$$\begin{aligned}
 x_1 + 2x_2 &\leq 40 \\
 3x_1 + 2x_2 &\leq 60 \\
 x_1, x_2 &\geq 0
 \end{aligned}$$

 ≤ 8

4 + 8 = 12

3. (a) Solve the following L.P.P. using Big-M method Minimize $z = 2x_1 + 3x_2$ Subject to $\begin{array}{l} 3x_1 + 5x_2 \geq 30 \\ 5x_1 + 3x_2 \geq 60 \end{array}$

$$5x_1 + 3x_2 \ge 60$$

 $x_1, x_2 \ge 0$

Write the dual of the following L.P.P.: (b)Maximize $z = x_1 + 5x_2$

MATH 4181

Subject to

$$3x_{1} + 4x_{2} \le 6$$

$$x_{1} + 3x_{2} \ge 2$$

$$x_{1}, x_{2} \ge 0$$

$$9 + 3 = 12$$

Group – C

4. (a) Find the initial basic feasible solution of the following transportation problem by Vogel's approximation method:

		W_1	W_2	W_3	W_4	Capacity
	F ₁	10	30	50	10	7
	F ₂	70	30	40	60	9
	F ₃	40	8	70	20	18
Require	5	8	7	14		

(b) A salesman has to visit five cities A, B, C, D and E. The distance (in hundred miles) between the five cities are as follows:

	А	В	С	D	Е
A	-	7	6	8	4
В	7	-	8	5	6
С	6	8	-	9	7
D	8	5	9	-	8
Е	4	6	7	8	-

If the salesman starts from city A and has to come back to city A, which route should he select so that the total distance travelled is minimum? 6 + 6 = 12

5. (a) Use dominance to reduce the following game problem to 2×2 game and hence find the optimal strategies and the value of the game

PLAYER B					
	3	-2	4		
PLAYER A	-1	4	2		
	2	2	6		

(b) Solve graphically the game whose payoff matrix is given by PLAYER **B**

	0	-2			
	7	-1			
PLAYER A	-1	4			
	-2	6			
	5	-3			

6 + 6 = 12

Group – D

- 6. (a) Find the stationary point(s) along with its nature for the function $f(x, y, z) = x^2 + 4y^2 + 4z^2 + 4xy + 4xz + 16yz$.
 - (b) Solve the following non-linear programming problem using Lagrange multiplier method: Minimize $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$ Subject to the constraints

$$x_1 + x_2 + x_3 = 20$$

$$x_1, x_2, x_3 \ge 0$$

4 + 8 = 12

- 7. (a) Maximize $f(x_1, x_2) = 12x_1 + 21x_2 + 2x_1x_2 2x_1^2 2x_2^2$ Subject to the constraints $x_2 \le 8$ $x_1 + x_2 \le 10$ $x_1, x_2 \ge 0$ by applying Kuhn-Tucker conditions.
 - (b) Show that the function $f(x_1, x_2) = x_1 x_2 x_1^2 x_2^2$ is concave over \mathbb{R}^2 . **10 + 2 = 12**

Group – E

- 8. Write the Dichotomous Search Algorithm for unimodal functions of one variable and use the algorithm to find the minimum of x(x 1.5) in the interval (0, 1) to within 10% of the exact value.
- 9. Minimize the function

 $f(x) = 0.65 - \left[\frac{0.75}{1+x^2}\right] - 0.65 \ x \ tan^{-1}\left(\frac{1}{x}\right)$ using Golden Section method with n = 6.

12

12