2014

MATHEMATICS - 1 (MATH 1101)

Time Alloted: 3 Hours

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable

GROUP - A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: [10×1=10]
 i) If A is a non-singular matrix of order 4, then the rank of
 - (a) 4 (b) $\frac{1}{4}$ (c) 2 (d) $\frac{1}{2}$
 - ii) If A, B are two non-zero square matrices such that AB = 0, then
 - (a) A and B are non-singular
 - (b) A is singular

the matrix A-1 is

- (c) B is singular
- (d) A and B are singular

iii) The rank of the matrix
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 is

(a) 5

(b) 2

(c) 1

(d) 6

iv) The series
$$\sum_{n=1}^{\infty} \frac{n}{2n+1}$$
 is

- (a) convergent
- (b) divergent
- (c) neigher convergent nor divergent
- (d) none of these

v) Which of the following function obeys Rolle's theorem in $[0,\!\pi]$

(a) x

(b) sin x

(c) cos x

(d) tan x

vi) If
$$y = \frac{x^n}{x-1}$$
, then $(y_n)_0 =$

- (a) (n!)
- (b) n! A xidem en
- (c) $(-1)^n$ n!
- (d) none of these

vii) If $y = 5x^{100} + 3$, then the 100^{th} derivative of y is

(a) 100!

(b) 0

(c) 5×100

(d) 5 ×100!

viii) If
$$u + v = x$$
 and $uv = y$, then $\frac{\partial(x,y)}{\partial(u,v)} =$

(a) u - v

(b) u v

(c) u + v

(d) u / v

- ix) If the vector $\overrightarrow{V} = (x + 3y)\hat{i} + (y 2z)\hat{j} + (x + az)\hat{k}$ is solenoidal, then the value of a is
 - (a) 2

(b) 4

(c) 3

- (d) 2
- x) Let ϕ be a scalar point function, then $\left| \overrightarrow{\nabla} \times \left(\overrightarrow{\nabla} \phi \right) \right| =$
 - (a) 1

(b) 0

(c) 2

(d) none of these

GROUP - B

(a) Using elementary row operations find the rank of the following matrix :

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 8 & 6 \\ 3 & 6 & 6 & 3 \end{bmatrix}$$

(b) If A, B are orthogonal matrices of same order and |A| + |B| = 0, prove that (A+B) is a singular matrix.

$$6+6 = 12$$

- 3. (a) If $(I A)(I + A)^{-1}$ is orthogonal, show that A is a skew symmetric matrix. (*I* is the identity matrix of same order as A.)
 - (b) If A, B are two nth order square matrices and B is non-singular, prove that A and B⁻¹AB have same eigen values. **6+6 = 12**

GROUP - C

4. (a) Apply Lagrange's Mean Value Theorem to prove that the chord on the parabola $y = x^2 + 2ax + b$ joining the points at $x = \alpha$ and $x = \beta$ is parallel to its tangent at the point $x = \frac{1}{2}(\alpha + \beta)$.

- (b) In Cauchy's Mean Value Theorem, if $f(x) = e^x$ and $g(x) = e^{-x}$, show that θ is independent of both x and h and is equal to $\frac{1}{2}$.
- 5. (a) Examine the convergence of the following infinite series.

$$\frac{1}{2^3} - \frac{1}{3^3}(1+2) + \frac{1}{4^3}(1+2+3) - \frac{1}{5^3}(1+2+3+4) + \dots$$

(b) Using Maclaurin's series show that

$$\sin x > x - \frac{1}{6}x^3$$
 if $0 < x < \frac{\pi}{2}$. 6+6 = 12

Group - D

6. (a) Show that

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{for}(x,y) \neq (0,0) \\ 0 & \text{for}(x,y) = (0,0) \end{cases}$$

is not continuous at (0,0)

(b) If
$$u = \cos^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$$
 then prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0.$$

(c) If
$$u = \frac{x+y}{1-xy}$$
 and $v = \tan^{-1}x + \tan^{-1}y$ find $\frac{\partial (u, v)}{\partial (x, y)}$.

7. (a) If $u = \sin ax + \cos ax$, show that $u_n = a^n [1 + (-1)^n \sin 2ax]^{1/2}$

(b) If
$$f(x,y) = \frac{x^2 - xy}{x + y}$$
, $(x,y) \neq (0,0)$
= 0, $(x,y) = (0,0)$

Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the origin.

6+6 = 12

GROUP - E

- 8. (a) Prove that $2(n-1)a^2I_n = \frac{x}{(x^2+a^2)^{n-1}} + (2n-3)I_{n-1}$ where $I_n = \int \frac{dx}{(x^2+a^2)^n}$, n being a positive integer greater than 1.
 - (b) Evaluate $\iint_{R} \frac{\sqrt{a^2b^2 b^2x^2 a^2y^2}}{\sqrt{a^2b^2 + b^2x^2 + a^2y^2}} dxdy$, the region of

integration R being the positive quadrant of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 5+7 = 12

9. (a) If $\phi \equiv \phi$ (x, y, z, t), prove that .

$$\frac{d\varphi}{dt} = \frac{\partial \varphi}{\partial t} + \overrightarrow{\nabla} \varphi \cdot \frac{d\overrightarrow{r}}{dt},$$

where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and x, y, z are differentiable functions of t.

(b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ and

S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. 6+6 = 12

and a positive integer