SPECIAL SUPPLE B.TECH/ECE/7TH SEM/ECEN 4101/2018

RF AND MICROWAVE ENGINEERING (ECEN 4101)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

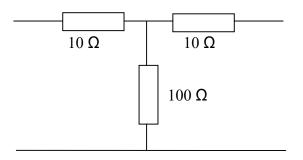
Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				$10 \times 1 = 10$	
	(i)	Dominant mode of (a) TE ₁₁	propagation in a Re (b) TM ₁₁	ectangular wavegui (c) TE ₁₀	ide is (d) TM ₁₀ .	
	(ii)	(a) frequency selec	e Q factor measures frequency selectivity energy dissipation		(b) energy stored in a cavity (d) all of these.	
	(iii)	(a) low pass filter(c) high pass filter		(b) band p	e considered as a (b) band pass filter (d) band stop filter.	
	(iv)			(b) combii	(b) combine power (d) all of these.	
	(v)	 A magic T-junction is a combination of (a) one H-plane T-junction and one E-plane T-junction (b) one H-plane T-junction and two E-plane T-junction (c) two H-plane T-junction and one E-plane T-junction (d) two H-plane T-junction and two E-plane T-junction. 				
	 (vi) The dominant mode is defined as the mode having (a) the lowest cut off frequency (b) the highest cut-off frequency (c) the cut-off frequency equal to the frequency of the propagatises signal (d) no frequency dependence. 				he propagating	

SPECIAL SUPPLE B.TECH/ECE/7TH SEM/ECEN 4101/2018

- (vii) The cut-off wavelength of the dominant mode propagating down a rectangular waveguide of dimension a × b will be
 (a) 2a
 (b) a
 (c) 2b
 (d) b.
- (viii) Which of the following microwave tubes has a repeller electrode?
 (a) Multi-cavity klystron
 (b) Helix travelling wave tube
 (c) Coupled-cavity TWT
 (d) Reflex klystron.
- (ix) The major advantage of a TWT over a klystron lies in its
 (a) higher bandwidth
 (b) higher gain
 (c) higher frequency
 (d) all of these.
- (x) Which of the following is used for its negative resistance characteristics?
 (a) Point contact diode
 (b) Schottky diode
 (c) IMPATT diode
 (d) Tunnel diode.


Group – B

- 2. (a) Explain dominant and degenerate modes in a rectangular waveguide with examples.
 - (b) The dominant modes TE_{10} is propagated in rectangular guide of dimensions 6 cm × 4 cm. The distance between maximum and minimum is 4.47 cm. Find signal frequency of the dominants mode.
 - (c) Establish the relationship between guide wavelength (λ_g), free space wavelength (λ_0) and cut off wavelength (λ_c) in rectangular waveguide. **4 + 4 + 4 = 12**
- 3. (a) TEM mode cannot exist in a rectangular waveguide. Explain.
 - (b) What do you mean by group velocity and phase velocity? Derive the relevant mathematical expression for phase and group velocity of rectangular waveguide.

4 + 8 = 12

Group – C

- 4. (a) Derive the S matrix of a two port network. Explain the significance of each S matrix coefficient.
 - (b) Find the S parameter of the following circuit when it is terminated with a matched load of 50 Ω .

5 + 7 = 12

- 5. (a) Explain the operating principle of two hole directional coupler.
 - (b) Discuss the operating principle of Magic T junctions. Explain the basic setup for the use of magic T junction as a duplexer.

5 + 7 = 12

Group – D

- 6. (a) What is Gunn effect? Describe the RWH theory to explain Gunn effect.
 - (b) Draw and explain the high frequency equivalent circuit of MESFET.

6 + 6 = 12

- 7. (a) Describe the high frequency limitations of conventional Vacuum tubes.
 - (b) With a suitable figure, describe the basic construction and operation of a two cavity klystron.

4 + 8 = 12

Group – E

- 8. (a) What should be the properties of an ideal filter? What do you mean by filter synthesis? Briefly describe different filter synthesis methods.
 - (b) Define the following filter parameters(i) Insertion loss (ii) Return loss (iii) Group delay.

6 + 6 = 12

- 9. (a) Describe the design procedure of a single stage transistor amplifier for maximum gain.
 - (b) Define different types of amplifier gains. Find out an expression for the power gain of a transistor amplifier.

6 + 6 = 12