SPECIAL SUPPLE B.TECH/ME/7TH SEM/MECH 4101/2018

POWER PLANT ENGINEERING (MECH 4101)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)							
1.	Choc	Choose the correct alternative for the following:					
	(i)	Stage efficiency of an (a) $\eta_{nozzle} + \eta_{blade}$ (c) $\eta_{nozzle} - \eta_{blade}$	impulse turbine is	(b) $\eta_{\text{nozzle}} \times \eta_{\text{blade}}$ (d) none of these	·.		
	(ii)	Out of the following, from flue gases? (a) feed pump (c) blow-off valve	which one is used for	part recovery of wa (b) super-heater (d) evaporator.	aste heat		
	(iii)	(iii) A plant has a peak load of 1000 MW but the average annual load is 3 MW. The annual load factor of the plant is (a) 0.35 (b) 28.5 (c) 35 (d) 3					
	(iv)	Tangential componer (a) flow velocity (c) whirl velocity	t of velocity of a steam turbine is called (b) relative velocity (d) absolute velocity.				
	 (v) Maximum power developed by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage impulse turbin as blade velocity under symmetrical blading and no friction can be supported by a single stage. 			g and no friction con	_		
	(vi)	(b) to increase the ir(c) to utilize the hea	t of condensing steam nternal energy of air su	pplied to the boiler			

MECH 4101 1

SPECIAL SUPPLE B.TECH/ME/ 7^{TH} SEM/MECH 4101/2018

	(VII)	(a) throttle control (c) by pass governing	(b) nozzle control (d) all of these.			
	(viii)	Which of the following is not a part of hydro- (a) catchment area (c) conduits	electric power plant? (b) spillways (d) BWR.			
	(ix)	In a Parson's reaction turbine, the enthalpy KJ/Kg. Enthalpy drop in moving blade in kJ/k (a) 40 (b) 10 (c) 2	gis			
	(x)	Steam is expanded in a set of nozzles from pressure which gives maximum discharge coming out of nozzle is (a) 20 bar (b) 5.5 bar (c) 6				
		Group – B				
2.	(a)	 (a) Draw T-S diagram of Rankine Cycle Under the following steronditions: (i) steam from boiler is superheated, exhaust steam from turbin wet, water coming out from condenser is saturated liquid is pumped to boiler at boiler pressure (ii) steam from boiler is superheated, exhaust steam from turbin saturated vapour, water coming out from condenser is sub coosub cooled liquid is pumped to boiler at boiler pressure 				
	(b)	Steam at 30 bar and 400° C from the boiler is turbine to 1 bar pressure in condenser. Calcoming out from turbine.				
3.	(a)	What is heat rate? What is the difference between the net cycle heat rate and the gross cycle heat rate?				
	(b)	What is a <i>supercritical</i> steam cycle?				
	(c)	State <i>five</i> main characteristics of an ideal wor	king in a power cycle. $4 + 3 + 5 = 12$			

2

Group - C

- 4. (a) A chimney is producing a draught equivalent to 13 mm of water which is 80% of the theoretical draught that would have been produced. The chimney is filled with hot gas of 287°C. The temperature of air outside is 21°C. The boiler uses 18 kg of air per kg of fuel consumed. Find the height of the chimney.
 - (b) Find the power required by the FD fan with the following data. Coal burning rate: 10 tons per hour, Theoretical air required: 9.9 kg of air per kg of coal Excess air supplied: 30%, Pressure head developed: 180 mm of water, Mechanical efficiency of the fan: 60% Ambient temperature: 30° C, Ambient pressure: 760 mm of Hg.

6 + 6 = 12

- 5. (a) Prove that the height h_w (in mm of water column) that produces natural draught is given by $h_w = 353H \left[\frac{1}{T_a} \frac{1}{T_g} \left(\frac{m_a + 1}{m_a} \right) \right]$, where T_a is the absolute temperature of atmospheric air, H is the chimney height above the fire grate, T_g is the average absolute temperature of flue gases and m_a is the mass of air supplied per kg of fuel?
 - (b) Write short notes on the following:
 - (i) Economiser (ii) Superheater

(iii) Steam stop valve.

6 + 6 = 12

Group - D

- 6. (a) Write in brief how steam flow into the turbine is governed by throttling.
 - (b) Draw the velocity diagram of a single stage impulse diagram, and mark the following:
 - (i) whirl velocities (ii) axial velocities (iii) blade velocity and (iv) absolute velocities.

$$6 + 6 = 12$$

7. (a) Show that the maximum discharge of steam through the nozzle takes place when the ratio of steam pressure at the throat (p_2) to the inlet

pressure
$$(p_1)$$
 is given by, $\frac{p_2}{p_1} = \left(\frac{2}{n+1}\right)^{\frac{n}{n+1}}$

SPECIAL SUPPLE B.TECH/ME/7TH SEM/MECH 4101/2018

(b) Prove that for a single stage impulse turbine the maximum blading efficiency will occur when the speed ratio is $\frac{\cos \alpha_1}{2}$, where α_1 is the nozzle angle.

6 + 6 = 12

Group - E

- 8. (a) Define the following factors with respect to a power plant: (i) Load factor (ii) Capacity factor and (iii) Use factor.
 - (b) List out the various factors that should be considered for setting up a conventional thermal power plant.

$$6 + 6 = 12$$

- 9. (a) How can total annual cost of a power plant be calculated. Describe the various components of the cost. How can the cost of generation of power be reduced?
 - (b) Write short notes on the following with respect to hydroelectric power generating station. Catchment Area, Reservoir, Dam, Spillways, Conduits & Power house.

$$(4+2)+6=12$$