SPECIAL SUPPLE B.TECH/CHE/CIVL/7TH SEM/ELEC 4182/2018

CIRCUIT THEORY ANALYSIS (ELEC 4182)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choo	Choose the correct alternative for the following:				
	(i)	Time constant of a (a) C/R	RC circuit is (b) R/C	(c) RC	(d) 1/RC.	
	(ii)	Nodal method of the circuit analysis is (a) KVL and Ohm's law (c) KVL and KCL		s is based on (b) KCL (d) KVL	s based on (b) KCL and Ohm's law (d) KVL, KCL and Ohm's law.	
	(iii)	Superposition theorem is applicable (a) linear and bilateral circuit (c) non linear circuit		e in (b) linear and unilateral circuit (d) none of the above.		
	(iv)	Which among the following re reciprocity of ABCD parameters? (a) AB - BD = 1 (c) BC - AD = 1		epresents the precise condition of (b) AC - BD = 1 (d) AD - BC = 1.		
	(v)	Laplace Transform (a) 1/s	n of unit step fund (b) s	ction is (c) 1/(s+1)	(d) 1/(s-1).	
	(vi)	The rank of a grap (a) n+1	h for a network v (b) n-1	vith n nodes and b (c) b-n+1	branches is (d) b+n-1.	
	(vii)) Which variable is independent in Z parameters calcu (a) Current (b) Vo (c) Both (a) and (b) (d) Po			ation? cage ver.	
	(viii)	Inverse Laplace tra (a) sin2t	ansform of $\frac{S}{S^2+4}$ is (b) sinh2t	s (c) cos2t	(d)cosh2t.	

SPECIAL SUPPLE B.TECH/CHE/CIVL/7th SEM/ELEC 4182/2018

- (ix) A circuit has resistors, capacitors and semi-conductor diodes. The circuit will be known as
 - (a) non-linear circuit
 - (c) bilateral circuit

- (b) linear circuit
- (d) both linear & bilateral circuit.
- (x) Application of Thevenin's theorem to a circuit yields
 - (a) equivalent current source and impedance in series
 - (b) equivalent current source and impedance in parallel
 - (c) equivalent voltage source and impedance in series
 - (d) equivalent voltage source and impedance in parallel.

Group – B

- 2. (a) Determine the current through 5 Ω resistor of the network shown in figure 2(a).
 - (b) Find the current through 10 Ω resistance of the circuit in figure 2(b) using mesh analysis.
- 3. (a) What is superposition theorem?Find 'v' of the circuit in figure 3(a) by Superposition Theorem.
 - (b) Find out the current through 5 Ω resistor of circuit in figure 3(b) using Thevenin's Theorem.

6 + 6 = 12

Group – C

- 4. (a) Find Laplace transform of the following signal tU(t T)
 - (b) Define ramp signal and step signal.

SPECIAL SUPPLE B.TECH/CHE/CIVL/7th SEM/ELEC 4182/2018

(c) Find Laplace Transform of given signal shown in figure 4.

3 + 3 + 6 = 12

- 5. (a) Obtain the current at t>0, if a.c. voltage v is applied when the switch K is moved to 2 from 1 at t=0 in the figure 5(a). Assume a steady state current of 1A in the RL circuit when the switch was at position 1.
 - (b) In the circuit figure 5(b), voltage is 10Volts dc. Obtain Transient current i(t) through the circuit. Define time constant of a R-C circuit.

6 + 6 = 12

Group – D

- 6. (a) What is a tree? Write the properties of a tree. Explain the relation between twig and link.
 - (b) Develop complete incidence matrix from the directed graph given in figure 6.

(1+4+2)+5=12

SPECIAL SUPPLE B.TECH/CHE/CIVL/7TH SEM/ELEC 4182/2018

7. (a) Consider the tree [given in figure 7(b)] of the graph given in Figure 7(a) and compute tie-set matrix and cut-set matrix.

Group – E

8. (a) Define Z parameters. Find Z parameters of the given network [Fig.8(a)].

(b) Find out the condition of symmetry for ABCD parameter.

(2+6)+4=12

9. (a) Define Y parameters. Find Y parameters of the following network [Figure 9(a)].

(b) Obtain ABCD parameters for the following network [Figure 9(b)].

(2+4)+6=12