MATH 4282

SPECIAL SUPPLE B.TECH/CSE/AEIE/8TH SEM/ MATH 4282/2018

ADVANCED COMPUTATIONAL MATHEMATICS AND GRAPH THEORY (MATH 4282)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: (i) The smallest prime divisor of the number 2.3.5.7 + 1 is (a) 3 (b) 17 (c) 11 (d) none of the others. (ii) The value of H_4 , the fourth harmonic number, is (a) 11/6 (b) 25/12 (c) 137/60 (d) none of the others. (iii) The number of subsets of a set having *n* elements is (a) $2^n - 1$ (b) 2^n (d) $2^n - 2$. (c) 2*n* (iv) The remainder in the division of $1! + 2! + 3! + 4! + \cdots + 20!$ by 4 is (a) 2 (b) 3 (c) 1 (d) 0. (v) The greatest common divisor of F_8 and F_9 (i.e the 8th and 9th Fibonacci numbers) is (a) 1 (b) 2 (d) 4. (c) 3

(vi) Consider the following recurrence: $T_n = T_{n-1} + 4$, $T_0 = 3$, $n \ge 1$. T_{100} is (a) even (b) prime (c) odd (d) negative.

 $10 \times 1 = 10$

Full Marks: 70

SPECIAL SUPPLE B.TECH /CSE/AEIE/8TH SEM/MATH 4282/2018

LCIAL	JULLE D.LE		ы г /0		202/2010							
(vii)	Let $\begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} 100 \\ \sqrt{20} \end{bmatrix}$	denote =	the	greatest	integer	less	than	or	equal	to	х.	Then
	(a) 2						()	b) 3				
	(c) 4						(0	d) 1				
(viii)	The chromatic number of a bipartite graph is											
	(a) 3						()	b) 2				
	(c) 1						(0	d) 0				
(ix)	() The constant term of the chromatic polynomial of a graph having 6 vertice											ces is
	(a) 6		(b) 5									
	(c) −1						(0	d) 0				

(x) The number of perfect matchings in C₅, the cycle having five vertices, is
(a) 1
(b) 3
(c) 2
(d) 0.

Group - B

2. (a) Solve the following recurrence:

$$V_0 = 1;$$

 $V_n = 2V_{n-1}, \quad for \ n > 0.$

(b) Find V_2 , V_3 and V_4 . Show your work. Consider the following recurrence.

 $K_0 = 1$; $K_n = K_{n-1} + 2n$, for n > 0. Find an *m* such that (i) $K_m > 100$, (ii) $K_m > 1000$. Show your work. 6 + 6 = 12

- 3. (a) Calculate $\sum_{k=0}^{10} (2+3k)$ and $\sum_{k=0}^{100} (2+3k)$. Find an *m* such that $\sum_{k=0}^{m} (2+3k) > 300$. Show your work.
 - (b) Calculate $\sum_{k=0}^{100} 2.3^k$ and $\sum_{k=0}^{10} 2.(3^k + 3k)$. Show your work.

6 + 6 = 12

Group - C

4. (a) Let F_n denote the *n*th Fibonacci number. The first few Fibonacci numbers are $F_0 = 0$, $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$. Calculate F_5 , F_6 , F_7 , F_{20} . Observe which ones are odd and which ones are even. Is F_{40} even or odd? Justify your answer and show your work.

SPECIAL SUPPLE B.TECH /CSE/AEIE/8th SEM/MATH 4282/2018

(b) State the Binomial Theorem. Calculate $\binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \dots + \binom{10}{10}$ by using this theorem or otherwise. Show your work.

7 + 5 = 12

5. (a) The Stirling number of the second kind, $\binom{n}{k}$, is the number of ways to partition a set of *n* things into *k* nonempty subsets. These numbers obey the recurrence relation

 ${n \atop k} = k {n-1 \atop k} + {n-1 \atop k-1}, integer \ n > 0.$ Observe that ${n \atop 1} = 1, {n \atop n} = 1$ for all n > 0. Calculate ${3 \atop 2}, {4 \atop 2}$ and ${5 \atop 2}$ by using the recurrence relation or otherwise. Show your work.

(b) The Stirling number of the first kind, $\binom{n}{k}$ is the number of ways to arrange n objects into k cycles. By using this definition, Find the values of $\binom{1}{1}$, $\binom{2}{1}$, $\binom{3}{1}$ and $\binom{3}{2}$. Show your work.

6 + 6 = 12

Group - D

- 6. (a) State Fermat's Little Theorem. Show that
 (i) 3¹⁶ ≡ 4(mod 7),
 (ii) 3³⁵ ≡ 5(mod 7) by using this theorem or otherwise.
 - (b) Find the greatest common divisor of 89 and 55 by using the Euclidean algorithm. Show your calculations in detail.

6 + 6 = 12

- 7. (a) By using Wilson's Theorem, or otherwise, find the remainder in the division of 18! + 7! + 6! by 19. Show your work.
 - (b) Let $\varphi(n)$ denote the Euler φ -function. Calculate (i) $\varphi(10)$ (ii) $\varphi(31)$ and (iii) $\varphi(105)$. Show your work.

5 + 7 = 12

Group - E

8. (a) State the definition of the chromatic polynomial of a graph. Find the chromatic polynomial of K_6 , the complete graph having 6 vertices. Show your work.

SPECIAL SUPPLE B.TECH /CSE/AEIE/8th SEM/MATH 4282/2018

(b) Find the chromatic number of (i) K_6 , (ii) a tree and (iii) a graph having 4 vertices and no edges. Justify your answers.

5 + 7 = 12

- 9. (a) State the definition of a matching in a graph. Find
 - (i) all maximal matchings in K_4 , the complete graph having 4 vertices and
 - (ii) a perfect matching in C_6 , the cycle having 6 vertices.
 - (b) Find a spanning tree of the following graph by Kruskal's algorithm.

6 + 6 = 12