SPECIAL SUPPLE B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101/2018

MATHEMATICS - I (MATH 1101)

Time Allotted : 3 hrs

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choo	choose the correct alternative for the following:						$10 \times 1 = 10$	
	(i)	The value of the c	leterminant	$ \begin{pmatrix} 100\\ 105\\ 110 \end{pmatrix} $	101 106 111	102 107 112	is		
		(a) 0	(b) 10			(c)	100	(d) 1000	
	(ii)	The equation $x + y + z = 0$ has (a) infinite number of solutions (c) unique solution				(b) no solution (d) two solutions.			
	(iii)	If $y = e^{ax+b}$ then $(y_5)_0 =$ (a) ae^b (b) a^5e^b			(C) $a^{b}e^{ax}$			(d) none of these.	
	(iv)	$\int_{0}^{\frac{\Pi}{2}} \cos^{6} x dx$ is equated as (a) $\frac{7\Pi}{12}$	ll to (b) $\frac{5\Pi}{32}$			(c)	<u>П</u> 32	(d) $\frac{3\Pi}{16}$	
	(v)	The series $\sum \frac{1}{n^p}$ is convergent							
		(a) $p \ge 1$	(b) <i>p</i> ≤ 1			(c) /	<i>p</i> >1	(d) <i>p</i> < 1	

Full Marks: 70

SPECIAL SUPPLE B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101/2018

(vi) The sequence
$$\left\{ (-1)^n \frac{1}{n} \right\}$$
 is
(a) convergent (b) oscillatory
(c) divergent (d) none of these.
(vii) If $u = \frac{x^3 + y^3}{\sqrt{x^2 + y^2}}$, find the value of n so that $xu_x + yu_y = nu$
(a) 0 (b) 2 (c) $\frac{1}{2}$ (d) none of these.
(viii) The value of $\int_C (xdx - dy)$ where c is a line joining (0,1) to (1,0) is
(a) 0 (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$
(ix) Rank of an identity matrix of order 5 is
(a) 0 (b) 5 (c) 25 (d) 1.
(x) The value of $\int_{10}^{0} (x + y) dx dy =$
(a) 2 (b) 3 (c) -1 (d) 0

Group – B

2. (a) Without expanding prove that

$$\begin{vmatrix} bc & a & a^{2} \\ ca & b & b^{2} \\ ab & c & c^{2} \end{vmatrix} = (a-b)(b-c)(c-a)(ab+bc+ca)$$

(b) Solve the following system of equations by Cramer's rule

$$3x + y + z = 4$$

 $x - y + 2z = 6$
 $x + 2y - z = -3$

6 + 6 = 12

SPECIAL SUPPLE B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101/2018

3. (a) If $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$, then show that $A^2 - 4A - 5I = O$, where *I*, *O* are the

identity matrix and the null matrix of order 3 respectively. Deduce that A is non-singular and hence find A^{-1} .

(b) Find whether the following system is consistent or not by row elimination method x + y + z = 12x + y + 2z = 23x + 2y + 3z = 5

6 + 6 = 12

Group – C

4. (a) Verify the Lagrange's Mean Value Theorem for the following function $f(x) = 2x^2 - 7x + 10$, $2 \le x \le 5$

(b) Prove that the infinite series
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 converges to 1.
6 + 6 = 12

5. (a) Determine the nature of the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5}$... Justify your answer.

(b) Test the convergence of the series $\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \dots$ to ∞

Group – D

6. (a) Prove that y = f(x+ct) + g(x-ct) satisfies $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ where f and g are assumed to be at least twice differentiable and c is any constant.

(b) If
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$

6 + 6 = 12

6 + 6 = 12

SPECIAL SUPPLE B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101/2018

7. (a) If
$$u = \frac{x+y}{1-xy}$$
 and $v = \tan^{-1} x + \tan^{-1} y$, find $\frac{\partial(u,v)}{\partial(x,y)}$

(b) Find the maxima and minima of the function $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ **6 + 6 = 12**

Group - E

- 8. (a) Evaluate $\int_{C} \left\{ (5xy 6x^2) dx + (2y 4x) dy \right\}$, where *C* is the arc of the curve $y = x^3$ from the point (1,1) to (2,8) in the *xy*-plane.
 - (b) Evaluate $\iint_{R} (x + y) dx dy$ where *R* is the region in the positive quadrant for which $x + y \le 1$

- 9. (a) Find $div \vec{F}$ and $curl \vec{F}$ where $\vec{F} = grad(x^3 + y^3 + z^3 3xyz)$
 - (b) A vector field \vec{F} is given by $\vec{F} = (\sin y)\hat{i} + x(1 + \cos y)\hat{j}$. Evaluate the line integral $\int_{\tau} \vec{F} \cdot d\vec{r}$ where τ is the circular path given by $x^2 + y^2 = a^2$ 6 + 6 = 12