SPECIAL SUPPLE B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2ND SEM/MATH 1201/2018

MATHEMATICS - II (MATH 1201)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)					
1.	Choose the correct alternative for the f			following:	$10 \times 1 = 10$
	(i)	The order and (a) 1,1	d the degree of the (b) 2,1	differential equation (c) 1,2	$a \frac{dy}{dx} + x = 0$ is (d) 2,2.
	(ii)	$\frac{xdy - ydx}{x^2 + y^2} =$ (a) $d\left(\frac{x}{y}\right)$ (c) $d\left(\tan^{-1}\left(\frac{x}{y}\right)\right)$	$\left(\frac{y}{x}\right)$	(b) $d\left\{log\left(\frac{x}{y}\right)\right\}$ (d) none of these.	
	(iii)	A binary tree (a) 1	has exactly one ve (b) 2	rtex of degree (c) 3	(d) 4
	(iv)	7) The maximum number of edges in a simple connected grap vertices is			
			(b) $n - 1$	$(c)^{\frac{n(n-1)}{2}}$	(d) none of these.
	(v)	The number of (a) 48	of edges in a tree w (b) 49	vith 50 vertices is (c) 50	(d) 51.
	(vi)	$\frac{\Gamma(6)}{\Gamma(3)} =$ (a) 60	(b) 240	(c) 120	(d) none of these.
	(vii)	$\int_0^\infty \frac{Sint}{t} dt =$ (a) $\frac{\pi}{3}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$

MATH 1201 1

- (viii) If the planes 2x + 3y 5z = 7, 3x + 2y + kz = 4 are perpendicular to each other the value of k is
 - (a) 1.2

(b) 3.6

(c) 2.4

- (d) 4.8.
- The direction cosines of the normal to the plane x + 2y + 3z = 9 are (ix)
 - (a) $\pm 1, \pm 2, \pm 3$

(b) $\pm \frac{1}{\sqrt{14}}$, $\pm \frac{2}{\sqrt{14}}$, $\pm \frac{3}{\sqrt{14}}$ (d) $\pm \frac{1}{\sqrt{5}}$, $\pm \frac{2}{\sqrt{5}}$, $\pm \frac{3}{\sqrt{5}}$

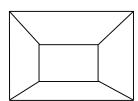
(c) $\pm \frac{1}{\sqrt{6}}$, $\pm \frac{2}{\sqrt{6}}$, $\pm \frac{3}{\sqrt{6}}$

- (x) The value of $B\left(\frac{3}{2}, 2\right)$ is
 - (a) $\frac{4\pi}{15}$ (b) $\frac{4}{15}$
- (c) 4π
- (d) none of these.

Group - B

- Solve $e^x \sin y dx + (e^x + 1)\cos y dy = 0$ 2. (a)
 - (b) Solve $\frac{dy}{dx} - \frac{y}{x+1} = e^x(x+1)$

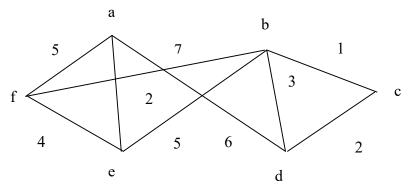
6 + 6 = 12


- Find the solution of $p^2 + 2xp 3x^2 = 0$. (a) 3.
 - Find the general solution of the following differential equation by D-(b) operator method.

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{4x}.$$

6 + 6 = 12

Group - C


- Show that a complete graph with *n* vertices has $\frac{n(n-1)}{2}$ edges. 4. (a)
 - Find the minimum and maximum number of edges of a simple graph (b) with 10 vertices and 3 components.
 - (c) Check whether the following graph is bipartite. If yes then redraw it as bipartite graph.

4 + 4 + 4 = 12

SPECIAL SUPPLE B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2ND SEM/MATH 1201/2018

5. (a) Apply the Kruskal's algorithm to find the spanning tree of the following graph.

(b) A tree has 4 vertices of degree 2, 3 vertices of degree 3, 3 vertices of degree 4. How many pendant vertices (vertex of degree 1) the tree should have?

$$7 + 5 = 12$$

Group - D

- 6. (a) Evaluate $\int_0^{\pi/2} Sin^7 \theta Cos^4 \theta d\theta$
 - (b) Evaluate $L\{Cos^2t\}$.

$$6 + 6 = 12$$

- 7. (a) Evaluate $L^{-1}\{\frac{s+1}{s^2+6s+2}\}$.
 - (b) Solve the differential equation using Laplace transform: y'' + y = t where y(0) = 1 and y'(0) = -2

$$6 + 6 = 12$$

Group - E

- 8. (a) Find the length of the shortest distance between the straight lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \text{ and } \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$
 - (b) Find the ratio in which the line segment joining the points (2,-3,5) and (7,1,3) is divided by the xy-plane.

$$6 + 6 = 12$$

9. (a) A variable plane which is at a constant distance 3p from the origin 0 cuts the axes A, B, C. Show that the locus of the centroid of the triangle ABC is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.

SPECIAL SUPPLE B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2ND SEM/MATH 1201/2018

(b) Find in the symmetrical form, the equation of the straight line x - 2y + 3z = 4, 2x - 3y + 4z = 5 and find its direction cosines.

6 + 6 = 12