M.TECH/BT/2ND SEM/BIOT 5202/2019

ADVANCES IN BIOREACTOR DESIGN, DEVELOPMENT AND SCALE UP (BIOT 5202)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Sherwood Number is given by the expression
 - (a) $\frac{K_L d_f}{D_{AB}}$ (b) $\frac{K_L d_b}{D_{AB}}$ (c) $\frac{K_L L_C}{D}$ (d) $\frac{K_L \rho}{D_{AB}}$ (ii) The ratio of momentum diffusivity and thermal diffusivity is called as (a) Prandlt number (b) Nusselt number (c) Peclet number (d) Schmidt number.
 - (iii) R T D curve due to pulse input gives rise to
 (a) asymptotic curve
 (b) hyperbolic curve
 (c) bell-shaped curve
 (d) normal distribution curve.
 - (iv) Low flow rate of a gas is measured by

 (a) rotameter
 (b) orificemeter
 (c) wet gas meter
 (d) thermo-anemometer.
 - (v) Monod model is an equation of which of the following types?
 (a) Linear
 (b) Nonlinear
 (c) Hyperbolic
 (d) Parabolic.
 - (vi) Cell suspension is a non-Newtonian fluid of the type
 (a) bingham plastic
 (b) pseudo plastic
 (c) dilatants
 (d) bingham plastic.
 - (vii) The criterion for the selection of animal cell culture reactor is
 (a) low shear rate
 (b) removal of toxic metabolites
 (c) combination of (a) & (b)
 (d) high cell mass concentration.

M.TECH/BT/2ND SEM/BIOT 5202/2019

- (ix) The scale-up criterion for a CSTR to be used for animal cell culture is based on (a) geometric similarity
 - (b) equal P/V
 - (c) equal tip velocity
 - (d) equal impeller based Reynolds Number (Rel).
- (x) Microbial fermentation is best carried out for high yield of cell mass by
 (a) plug flow reactor
 (b) fed batch reactor
 (c) back-mixed reactor
 (d) fluidized bed reactor.

Group – B

2. (a) A new strain of yeast being considered for biomass production. The following data were obtained using a chemostat. An influent substrate concentration of 800 mg/L and an excess of oxygen were used at a pH of 5.5 and T = 35°C. Using the following data, calculate μ_{max} , K_s , $Y_{X/c}^M$,

$$k_d$$
, and m_S , assuming $\mu_{\text{net}} = \frac{\mu_{\text{max}}S}{K_s + S} - k_d$.

D (h-1)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
S (mg/L)	16.7	33.5	59.4	101	169	298	702
X (mg/L)	366	407	408	404	371	299	59

(b) A bioreactor has an oxygen mass transfer coefficient capability of 400 h⁻¹. What is the maximum concentration of *E. coli* that can be grown aerobically in this reactor? Respiration rate of *E.coli* is 0.35 g O₂ (g cell)⁻¹ h⁻¹. Critical oxygen concentration is 0.2 mg/L. Assume oxygen saturation with air to be 6.7 mg/L.

8 + 4 = 12

- 3. (a) Calculate the productivity (i.e DP) of a chemostat under the following conditions:
 - (i) Apply Monod kinetics. Assume negligible amount of biomass must be converted to product.
 - (ii) Apply Luedeking-Pirate Kinetics. Assume steady state: $D = 0.8 \mu_{max}$, $\mu_{max} = 1.0 \text{ h}^{-1}$, $K_s = 10 \text{ mg/L}$, $\alpha = 0.4 \text{ mg P/g X}$, $Y_{X/s}^M$ = 0.5 g X/ g S, $S_0 = 1000 \text{ mg/L}$, $\beta = 0.5 \text{ h}^{-1} \text{ mg P/g X}$.
 - (b) A value of k_{La} = 30 per hour has been determined for a fermenter at its maximum practical agitator rotational speed and with air being sparged at 0.5 L gas/g dry weight per hour are to be cultured. The C_{CRIT}

1

is 0.2 mg/L. The solubility of oxygen from air in the fermenter broth is 7.3 mg/L at 30° C.

- (i) What maximum concentration of *E. coli* can be sustained in this bioreactor under aerobic condition?
- (ii) What concentration could be maintained if pure oxygen was used to spurge the bioreactor?

7 + 5 = 12

Group – C

- 4. (a) Derive integral form of the Henri-Michaelis-Menten equation.
 - (b) Calculate K_i for a non-competitive inhibition if 2 × 10⁻⁴ M [I] yields 75% inhibition of enzyme-catalyzed reaction.
 - (c) Find the first-order rate constant for the disappearance of A in the gas reaction $2A \rightarrow R$ if, on holding the pressure constant, the volume of the reaction mixture, starting with 80% A, decreases by 20% in three minutes.

3 + 3 + 6 = 12

- 5. (a) We plan to replace our M F R with one having double the volume. For the same aqueous feed (10 ml A/lit.) and the same feed rate find the new conversion. The reaction kinetics is given below: $A \rightarrow R$, $-r_A = KC_A^{1.5}$ and present conversion is 70%.
 - (b) An aqueous feed of A and B (400 l/min, 100 mmol B/l) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by

A+B \rightarrow R, $r_{A} = 200C_{A}C_{B}\frac{\text{mol}}{\text{liter.min}}$.

Find the volume of reactor needed for 99% conversion od A to product. 7 + 5 = 12

Group – D

- 6. (a) What do you mean by immobilization of cells?
 - (b) Explain different immobilization techniques of cells.
 - (c) Compare free cells with immobilized cells for lab scale production of bioproducts.

4 + 4 + 4 = 12

7. (a) Define membrane bioreactors.

BIOT 5202

3

M.TECH/BT/2ND SEM/BIOT 5202/2019

(b) Explain operating principles of membrane bioreactor with the help of a schematic diagram.

3 + 9 = 12

Group – E

- 8. (a) What is the basic principle of pH meter?
 - (b) How can we control the temperature in a bioreactor?

6 + 6 = 12

- 9. (a) Explain the significance of Dissolved Oxygen (DO) in bioreactor? Discuss the different type of DO probes available. Explain the operating principle of each type of DO probes.
 - (b) What are the different types of controller used in bioprocess?

4

(2+2+4)+4=12