В.ТЕСН/МЕ/6^{тн} SEM/MECH 3253/2019

ADVANCED FLUID MECHANICS (MECH 3253)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Stream function is defined for
 - (a) all three-dimensional flow situation
 - (b) flow of perfect fluid
 - (c) irrotational flows only
 - (d) two-dimensional incompressible flows.
 - (ii) Simple Couette flow is
 - (a) purely shear driven flow
 - (b) purely pressure driven flow
 - (c) combination of shear and pressure driven flow
 - (d) constant across the passage.
 - (iii) Doublet is a special case of
 - (a) source and uniform flow combination
 - (b) source and sink combination
 - (c) sink and uniform flow combination
 - (d) uniform and vortex flow combination.
 - (iv) At stagnation point the resultant velocity of combined flow field is (a) negative (b) infinite (c) zero (d) ½.
 - (v) Camber of an aerofoil represents
 - (a) distance between leading and trailing edge
 - (b) mean profile of aerofoil
 - (c) ratio of maximum thickness to cord
 - (d) ratio of span of wing to chord.
 - (vi)For irrotational flow Curl V is equal to
(a) zero(c) negative

B.TECH/ME/6TH SEM/MECH 3253/2019

- (vii) The boundary layer separation takes place if (a) pressure gradient is zero (b)
 - (a) pressure gradient is zero(b) pressure gradient is positive(c) pressure gradient is negative(d) both (a) and (c).
- (viii) Select the expression that does not give the sonic velocity

(a)
$$\sqrt{\frac{\gamma P}{\rho}}$$
 (b) $\sqrt{\frac{\gamma \rho}{P}}$ (c) $\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_s}$ (d) $\sqrt{\gamma RT}$

- (ix) Incompressible flow analysis for a compressible gas medium is valid for Mach number
 (a) less than 0.3
 (b) 0.3 to 0.5
 (c) 0.5 to 0.8
 (d) 0.8 to 1.2.
- (x) The shape of a subsonic diffuser is
 (a) converging along the flow direction
 (b) diverging along the flow direction
 (c) straight along the flow direction
 - (d) both (b) and (c).

Group – B

- 2. (a) Derive Laplace equation for potential flow which is linear, second order and partial differential equation.
 - (b) (i) Define circulation and vorticity.
 - (ii) An open circular cylinder of 20cm diameter and 100cm long contains water upto a height of 60cm. The tank is rotated about its vertical axis at 300rpm. Find the depth of the parabola formed at the free surface of water.

4 + (4 + 4) = 12

- 3. (a) Prove that the stream functions are family of circles for a doublet.
 - (b) A point source having strength 0.6 m²/s is located at (-1, 0) and a point sink of strength 1.2 m²/s is located at (1, 0). Determine the resultant velocity at point (1, 1).

6 + 6 = 12

Group – C

4. (a) Prove that the relationship between the average velocity (\bar{u}) and maximum velocity (U_{max}) in case of parallel flow between two fixed parallel plates is $U_{max} = 1.5\bar{u}$.

MECH 3253

1

MECH 3253

2

(d) infinite.

В.ТЕСН/МЕ/6^{тн} SEM/MECH 3253/2019

- (b) Oil flows between two parallel plates, one of which is at rest and the other moves with a velocity U. (i) If the pressure is decreasing in the direction of flow at the rate of 5 Pa/m, the dynamic viscosity is 0.05 kg/ms, the spacing of the horizontal plate is 0.04 m and the volumetric flow Q per unit width is 0.02 m^2/s , what is the velocity U? (ii) Calculate U if the pressure is increasing at a rate of 5 Pa/m in the direction of flow. 5 + (4 + 3) = 12
- 5. (a) For laminar flow between two concentric cylinders of radii R_1 and R_2 , which are rotated at constant angular velocity ω_1 and ω_2 respectively, derive the expression of tangential velocity V_{θ} at any radius r, in terms of R_1 , R_2 , ω_1 and ω_2 . State the necessary assumptions for the derivation.
 - (b) For Blasius flow over a flat plate, write the Prandtl boundary layer equations, with necessary boundary conditions. What is shooting technique?

8 + 4 = 12

Group – D

- 6. (a) Prove that a small disturbance propagates through a compressible fluid medium with sonic speed. Hence, find the speed of propagation at 27° C in air. Given, R = 287J/kgK and $\gamma = 1.4$ for air.
 - (b) Write short note on Mach cone.

$$(7+1)+4=12$$

- 7. (a) What is meant by 'choking of a duct'?
 - (b) Air flows isentropically in a duct. Properties at section 1 are $V_1 = 250$ m/s, $T_1 = 350$ K. At section 2 downstream, the temperature has dropped to 330 K. Find (i) velocity at section 2, and (ii) Mach number at section 2. Given, $c_p = 1000$ J/kgK, R = 287 J/kgK and $\gamma = 1.4$ for air. 4 + (5 + 3) = 12

Group – E

- 8. (a) Derive the expression for drag for flow past a cylinder without circulation.
 - (b) An aeroplane weighing 39.24 kN is flying in a horizontal direction at 360 km/h. The plane spans 15 m and has a wing surface area of 35 m^2 . If drag co-efficient is 0.03 and density of air is 1.22 kg/m³, determine
 - (i) Co-efficient of lift

3

B.TECH/ME/6TH SEM/MECH 3253/2019

- (ii) Power required to drive the plane
- (iii) Theoretical value of the boundary layer circulation.

6 + 6 = 12

- 9. (a) How the position of the stagnation points for flow over a rotating cylinder in a uniform flow is determined?
 - (b) A 300 mm diameter circular cylinder is rotated about its axis in a stream of water having a uniform velocity of 5 m/s. Estimate the rotational speed when both the stagnation points coincide. Estimate the lift force experienced by the cylinder under such condition. Density of water is assumed to be 1000 kg/m^3 .

6 + 6 = 12