B.TECH/IT/4TH SEM/MATH 2203/2019

GRAPH THEORY AND ALGEBRAIC STRUCTURES (MATH 2203)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$

•	choose the correct atternative for the following.				. 1 10
	(i)	Which of the followi (a) Matrix addition (c) Matrix multiplica	mmutative? (b) Arithmetical multiplication (d) Arithmetical addition.		
	(ii)	Let <i>G</i> be a simple co Then, the number of (a) 6	vith 13 vertices and 19 edges. edding of the graph is (c) 9 (d) 13.		
	(iii)	Let G be a group and (a) 17	d aεG. If O(a)=17 then C (b) 16	0(a ⁸) is (c) 8	(d) 5.
	(iv)	The ring of matrices $\left\{ \begin{pmatrix} 2a & 0 \\ 0 & 2b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ with respect to usual matrix operations (a) contains divisors of zero (b) does not contain divisors of zero (c) contains unity (d) is a field.			
	(v)	The symmetric group S₃ is (a) cyclic but not abelian (c) non cyclic and non abelian		(b) cyclic and abelian (d) none.	
	(vi)	A tree with 5 vertice of ways. (a) 324	t colours in (c) 20	_ number (d) 120.	

(vii) If x is an element of a group G and
$$O(x) = 5$$
, then
(a) $O(x^{10}) = 5$ (b) $O(x^{15}) = 5$
(c) $O(x^{23}) = 5$ (d) $O(x^{20}) = 5$.

1

B.TECH/IT/4TH SEM/MATH 2203/2019

- (viii) If *H* is a subgroup of a group *G* and *a*, *b* are two distinct elements of *G*, then indicate which of the following statements is true: (a) aH = Ha (b) $Ha \cap Hb = \phi$
 - (c) $Ha \cap Hb \neq \phi$ and $Ha \neq Hb$ (d) aH = bH.
- (ix) Which one of the following rings is an integral domain? (a) \mathbb{Z}_{101} (b) \mathbb{Z}_{200} (c) \mathbb{Z}_{2001} (d) \mathbb{Z}_{356} .
- (x) The number of elements of order 6 in the cyclic group of order 42 is (a) 7 (b) 2 (c) 3 (d) 42.

Group – B

- 2. (a) Prove that $\lambda^4 3\lambda^3 + 4\lambda^2$ cannot be a chromatic polynomial of a graph G.
 - (b) Define dual of a graph. Draw the dual of the graph K₄.
 - (c) Is K₅ planar? Justify your answer.

4 + 5 + 3 = 12

- 3. (a) (i) State Hall's Marriage Theorem.
 (ii) Find the number of perfect matchings in *K_n*.
 - (b) How many edges a planar graph must have with 5 regions and 7 vertices? Draw one such graph.

(2+6)+4=12

Group – C

- 4. (a) Show that all roots of the equation $x^4 = 1$ forms a commutative group under the usual multiplication.
 - (b) Prove that in a group G for all $a, b \in G$, the equation ax = b has a unique solution in G.
 - (c) Show that a group (G,*) is abelian if and only if $(a*b)^2 = a^2*b^2 \forall a, b \in G$.

4 + 4 + 4 = 12

- 5. (a) Prove that a group is abelian if and only if $(ab)^{-1}=a^{-1}b^{-1}$.
 - (b) Let $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$ be two permutations. Show that $AB \neq BA$.
 - (c) Find the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$.

6 + 4 + 2 = 12

B.TECH/IT/4TH SEM/MATH 2203/2019

Group - D

- 6. (a) Prove that a group (G,*) is commutative if $(a * b)^n = a^n * b^n$, for any three consecutive integers *n* and for all $a, b \in G$.
 - (b) Prove that every group of order less than 6 is abelian.

6 + 6 = 12

- 7. (a) Prove that every group of prime order is cyclic.
 - (b) Prove that every cyclic group is abelian. Is the converse true? Justify your answer.

6 + (4 + 2) = 12

Group – E

- 8. (a) Let $G = (\mathbb{R}, +)$, $G' = (\{z \in \mathbb{C} : |z| = 1\}, \cdot)$ and $\phi: G \to G'$ is defined by $\phi(x) = \cos 2\pi x + i \sin 2\pi x, x \in \mathbb{R}$. Determine whether ϕ is a homomorphism.
 - (b) Let *R* be a ring. The centre of *R* is the subset Z(R) defined by $Z(R) = \{x \in R : xr = rx \forall r \in R\}$. Prove that Z(R) is a subring of *R*. **6** + **6** = **12**
- 9. (a) Prove that every finite integral domain is a field.
 - (b) Define divisors of zero in a ring R. Show that the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ is a divisor of zero in M₂(\mathbb{Z}).
 - (c) Show that a division ring contains exactly two idempotent elements. 6+3+3=12