B.TECH/IT/4TH SEM/INFO 2201/2019

SWITCHING THEORY & AUTOMATA (INFO 2201)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Reverse of $(0+1)^*$ will be (a) Φ (b) Null (c) $(0+1)^*$ (d) (0+1).
 - (ii) The language accepted by finite automata is (a) type 0 (b) type 1 (c) type 2 (d) type 3.
 - (iii) Which is the language generated by the grammar $S \rightarrow aSb$, $S \rightarrow A$, $A \rightarrow aA$? (a) $a^m b^m$ (b) Φ (c) $a^n b^m$ (d) $a^m b^n$.
 - (iv) k-level equivalence is possible between two finite automata(a) if all equivalences above k level exist between them
 - (b) if all equivalences up to k-1 level already exist
 - (c) if both contain at least k number of states
 - (d) if both contain exactly k number of states.
 - (v) If $\Sigma = \{a,b\}$, then the number of possible different strings with length exactly n are (a) 2^{n-1} (b) 2^n (c) $2^n - 1$ (d) none of these.
 - (vi) A Moore machine accepts a string w of length k. The length of the output string is

(a) k+1 (b) k-1 (c) k (d) k^2 .

- (vii)The intersection of CFL and RE is always
(a) CFL(b) RE(c) CSL(d) both (a) and (c).
- (viii) Which of the following is true?
 - (a) (01)*0 = 0(10)*
 (b) (0+1)*0(0+1)*1(0+1) = (0+1)*01(0+1)*
 (c) (0+1)*01(0+1)*+1*0* = (0+1)*
 - (d) all of the mentioned.

1

B.TECH/IT/4TH SEM/INFO 2201/2019

(ix) CFLs are not closed under(a) union(c) intersection

(b) concatenation (d) homomorphism.

(x) A pumping lemma is used for proving that
(a) a language is context free
(b) a language is not context free
(c) two CFLs are the same
(d) two CFLs are different.

Group – B

- 2. (a) A long sequence of pulses enters a two I/P, two O/P synchronous sequential circuit, which is required to produce an O/P pulse z=1 whenever the sequence 1101 occurs. Overlapping sequences are accepted; for example, if the input is 011011011......, the required O/P is 000010010...........
 - (i) Draw a state diagram for a sequence (1101) detector.
 - (ii) Select an assignment and show the excitation and O/P tables.
 - (iii) Draw a logic diagram of a sequence (1101) detector.
 - (b) Define K-equivalence with example.

(3+3+4)+2=12

3. (a) Find a minimum state reduced machine (given below) containing the original one.

DC	NS,Z		
PS	I ₁	I ₂	I ₃
Α	С,0	E,1	
В	С,0	E, _	
С	B, _	С,0	A,_
D	B,0	С,_	E,_
Е		Е,0	A,_

(b) Determine whether or not the following machine has a finite memory, and if it does find its order.

NS,z		
X = 0	X = 1	
D,0	C,1	
A,0	E,0	
C,1	E,0	
C,1	C,1	
B,0	B,1	
	X = 0 D,0 A,0 C,1 C,1	

Group – C

4. (a) Write the difference between Mealy machine and Moore machine. Consider the following Mealy machine as shown below. Convert it to equivalent Moore machine.

PS	Next State,O/P	
	X=a	X=b
S ₁	s _{1,} a	s _{2,} a
S ₂	s _{2,} b	s _{1,} b
S 3	s _{2,} a	s _{3,} a
S 4	s ₁ , a	S4, A

- (b) Write Regular Expression (RE) over $\sum = \{0, 1, 2\}$ for set of all strings which contains atleast one '1' and atleast one '2'.
- (c) Prove that $(a^* ab + ba)^* a^* = (a + ab + ba)^*$.

$$(2+4) + 2 + 4 = 12$$

5. (a) Convert the following Deterministic Finite Automata (DFA) to Regular Grammar (RG), where q_0 is the initial state and q_f is the final state.

PS	Next State		
	X = 0	X = 1	
\mathbf{q}_0	\mathbf{q}_0	q ₁	
\mathbf{q}_1	\mathbf{q}_{f}	\mathbf{q}_{f}	
\mathbf{q}_{f}	\mathbf{q}_{f}	\mathbf{q}_0	

(b) Define Regular Expression recursively. State Arden's theorem. Draw Finite Automata Transition Diagram of the following Regular Expression: (((ab+c)*(ac+ba)* + (a+b)(b+cd)*)* + (a+bd)*)* abc
 6 + (2 + 1 + 3) = 12

Group – D

- 6. (a) Define Pumping Lemma for Context Free Language. Show that the language $\{a^{n^2} | n \ge 1\}$ is not context free.
 - (b) Define Left Recursive Grammar (CFG) with example.
 - (c) Show that the following grammar is ambiguous:

$$S \rightarrow aB | ab$$

 $A \rightarrow aAB | a$
 $B \rightarrow ABb | b$
 $(2 + 4) + 2 + 4 = 12$

B.TECH/IT/4TH SEM/INFO 2201/2019

- 7. (a) Reduce the following grammar to Greibach Normal Form (GNF): $S \rightarrow AaBC$
 - $A \rightarrow B|aA$ $B \rightarrow ccCC|acB|a|C$ $C \rightarrow aC|A$
 - $C \rightarrow aC \mid \lambda$
 - (b) Write context free grammar that generates
 - (i) odd and even palindrome strings with 0 and 1.
 - (ii) alternating sequence of 0's and 1's.

5 + (4 + 3) = 12

Group – E

- 8. (a) What is Instantaneous Description(ID) in PDA? Explain with example.
 - (b) Let L be the set of all strings over {a, b} consisting of twice as many a's as b's. Construct,
 - (i) a CFG accepting L
 - (ii) a PDA accepting L by empty store.

(2+2) + (4+4) = 12

- 9. (a) Deign Turing Machine over $\sum = \{0,1\}$ to accept the language $L = \{0^m 1^n | m, n \text{ are even}\}$.
 - (b) Write short note on Multi-tape Turing Machine(TM).

7 + 5 = 12