B.TECH/CSE/ECE/8TH SEM/MATH 4282/2019

ADVANCED COMPUTATIONAL MATHEMATICS AND GRAPH THEORY (MATH 4282)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The Eulerian number $\langle \frac{4}{3} \rangle$ is (a) 1 (b) 3 (c) 4 (d) 11. (ii) The Stirling number of the first kind (or Stirling cycle number) $\begin{bmatrix} 4\\1 \end{bmatrix}$ is (a) 24 (b) 6 (c) 4 (d) 1. (iii) The tenth Bernoulli number $B_{10} =$ (a) $-\frac{1}{30}$ (b) $\frac{1}{42}$ (c) $\frac{5}{66}$ (d) $-\frac{691}{2730}$
 - (iv) The generating function of the sequence $\{1, 2, 4, 8, 16, 32, \dots, 2^n, \dots\}$ is (a) $\frac{1}{1+z^2}$ (b) $\frac{1}{1-z^2}$ (c) $\frac{1}{1-2z}$ (d) $\frac{1}{1+2z}$.
 - (v) The remainder in the division of $18! \times 3^{18}$ by 19 is (a) 18 (b) 1 (c) 17 (d) 3
 - (vi) $\Delta(x^{\underline{m}}) =$ (a) $(m-1)x^{\underline{m}}$ (b) $mx^{\underline{m}}$ (c) $(m-1)x^{\underline{m-1}}$ (d) $mx^{\underline{m-1}}$
 - (vii) If $u_0 = 2$, $u_n = 3u_{n-1}$ for n > 0, then $u_{100} + 7$ is (a) even
 - (b) divisible by 3
 - (c) divisible by 7
 - (d) neither divisible by 3 nor divisible by 7.
 - (viii) Let [x] denote the greatest integer less than or equal to x. If c > 0 and $\begin{bmatrix} 100 \\ \sqrt{c} \end{bmatrix} = 0$, then (a) 2 < c < 3 (b) 1 < c < 2(c) 100 < c < 200 (d) c < 1

MATH 4282

1

B.TECH/CSE/ECE/8TH SEM/MATH 4282/2019

- (ix) The chromatic polynomial of a complete graph with n = 3 vertices is (a) $\lambda(\lambda - 1)$ (b) $\lambda(\lambda - 1)(\lambda - 2)$ (c) λ^3 (d) $(\lambda - 1)$
- (x) A graph *G* has a spanning tree if and only if *G* is
 (a) disconnected
 (b) a tree
 (c) complete
 (d) connected.

Group – B

- 2. (a) Prove the following recurrence relation for $\binom{n}{k}$, the Stirling number of the second kind (or Stirling subset number): $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}.$ Given that $\binom{1}{0} = 0, \binom{1}{1} = 1, \binom{1}{2} = 0, \binom{2}{0} = 0, \binom{2}{3} = 0$, calculate $\binom{3}{1}, \binom{3}{2}, \binom{3}{3}$ by using the recurrence relation.
 - (b) Let F_n denote the *n* th Fibonacci number and let the generating function of the Fibonacci numbers be

$$F(z) = F_0 + F_1 z + F_2 z^2 + F_1 z^3 + F_1 z^4 + \dots = \sum_{n \ge 0} F_n z^n$$

Prove that $F(z) = \frac{z}{1-z-z^2}$. Show your calculations in detail.
 $7 + 5 = 12$

- 3. (a) (i) State the recurrence relation for J(n) in the Josephus problem.
 - (ii) Calculate J(n) upto n = 32 and show the values in a table.
 - (iii) Indicating the pattern that you find in the data, state the solution of the problem (i.e., an expression for J(n)). (The proof is not required).
 - (b) Recall the generating function of the Bernoulli numbers, B_n : $\frac{z}{e^{z}-1} = \sum_{n\geq 0} B_n \frac{z^n}{n!}.$ Prove that $z \cot z = \sum_{n\geq 0} (-4)^n B_{2n} \frac{z^{2n}}{(2n)!}.$ (2+2+2)+6=12

Group – C

- 4. (a) Compute $\varphi(999)$ where $\varphi(n)$ is the Euler φ -function. Show your calculations in detail and state any result that you use.
 - (b) State Fermat's little theorem. Use this theorem to find the remainder in the division of $2^{205} + 3^{304} + 4^{402}$ by 11. Show your work in detail.

5 + 7 = 12

MATH 4282

2

B.TECH/CSE/ECE/8TH SEM/MATH 4282/2019

5. (a) Let [x] denote the greatest integer less than or equal to x. Prove that $\left[\sqrt{[x]}\right] = \left[\sqrt{x}\right]$, for real $x \ge 0$.

(b) Prove that
$$\sum_{k} {r \choose k} {s \choose n-k} = {r+s \choose n}$$
, for integer *n*.

6 + 6 = 12

6 + 6 = 12

Group - D

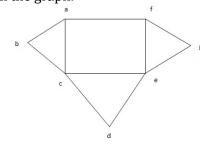
- 6. (a) Find the greatest common divisor of the Fibonacci numbers $F_9 = 34$ and $F_{10} = 55$ by using the Euclidean algorithm. Express it as 55x + 34y where *x* and *y* are integers. Show your calculations in detail.
 - (b) Show that $\sum_{k=0}^{m} \binom{m}{k} / \binom{n}{k} = \frac{n+1}{n+1-m}$.
- 7. (a) Let the harmonic numbers be defined as $H_n \coloneqq \sum_{k=1}^n \frac{1}{k}$ and the harmonic numbers of order r be defined as $H_n^{(r)} \coloneqq \sum_{k=1}^n \frac{1}{k^r}$ (Note that $H_n^{(1)} = H_n$). Show that $H_n - \ln n = 1 - \frac{1}{2} (H_n^{(2)} - 1) - \frac{1}{3} (H_n^{(3)} - 1) - \frac{1}{4} (H_n^{(4)} - 1) - \dots$
 - (b) Let T_n denote the minimum number of moves that will transfer *n* disks from one peg to another in the Tower of Hanoi problem. Show that $T_3 \le 2T_2 + 1$.

Prove the recursion $T_n \leq 2T_{n-1} + 1$, for n > 0, without using induction. State clearly why your proof is valid only for " \leq " in the recursion and not for "=".

6 + 6 = 12

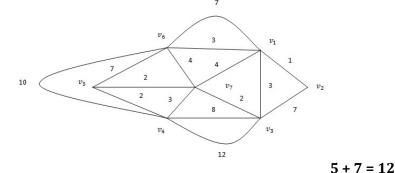
Group – E

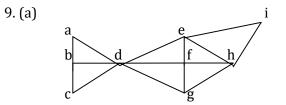
8. (a) Find all the maximal and maximum matchings of the graph given below. Find the matching number of the graph. Check if there exists a perfect matching in the graph.



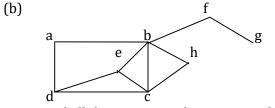
B.TECH/CSE/ECE/8TH SEM/MATH 4282/2019

(b) Apply Dijkstra's Algorithm to find the shortest path from v_2 to v_5 in the given graph:





Find the vertex connectivity and the edge connectivity of the given graph.



Find all the cut sets in the given graph.

(c) Can $\lambda^4 - 4\lambda^3 + 7\lambda^2 - 2\lambda + 3$ be the chromatic polynomial of a simple graph having at least one edge? Justify your answer.

4 + 4 + 4 = 12

3