B.TECH/ECE/6TH SEM/ECEN 3201/2019

DIGITAL VLSI DESIGN (ECEN 3201)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

10 × 1 = 10

(i)	VLSI technology uses to form in (a) transistors (c) diodes	tegrated circuit (b) switches (d) buffers	
(ii)	In Pseudo-nMOS logic, n transistor oper (a) cut off region (c) resistive region	rates in (b) saturation region (d) linear region.	
(iii)	According to Moore's Law, Number doubled in (a) 12 Months (c) 24 Months	of Transistor per chip gets (b) 18 Months (d) 30 Months.	
(iv)	Latest Integration Technology is (a) LSI (c) ULSI	(b) VLSI (d) GSI.	
(v)	The noise immunity with no (a) increases (c) remains constant	noise margin (b) decreases (d) remains independent	
(vi)	Stick diagrams are those which convey layer information through(a) thickness(b) colours(c) layers(d) shapes.		
(vii) Ecen 3201	Value of "Lambda" in 130nm Process N (a) 130nm (c) 180nm 1	ode is (b) 65nm (d) 100nm.	

B.TECH/ECE/6TH SEM/ECEN 3201/2019

(viii)	BDD is used in (a) High Level Synthesis (c) Floorplan	(b) Logic Synthesis (d) Routing.
(ix)	KL Algorithm is related to (a) Routing (c) Logic synthesis	(b) Partitioning (d) High level synth

Partitioning High level synthesis.

(x) ATPG stands for

(a) Advanced Test Pattern Generator (b) Active Test Pattern Generator (c) Automatic Test Pattern Generator (d) Both b and c.

Group - B

- 2. (a) What are the differences between Full Custom Design and Std Cell based Semi Custom Design?
 - Draw Circuit Diagram of 2 input XOR gate using CMOS Logic. (b)
 - (c) Draw Circuit Diagram of 2 input XOR gate using CMOS Transmission Gate (TG).

4 + 4 + 4 = 12

- 3. (a) Draw Voltage Transfer Characteristic curves of a CMOS inverter for $k_r = 0.5$, 1 and 3 in the same graph. Briefly explain the differences in the three curves.
 - Draw the CMOS circuit of the expression $Y = \overline{\{A(B+C)\} + D}$. Calculate (b) the logical effort for all the inputs.
 - Implement a 4- input AND gate using Domino logic. (c)

(2+2)+4+4=12

Group - C

- Draw Circuit Diagram of a D-Latch using CMOS Transmission Gate (TG). 4. (a)
 - (b) Draw Circuit Diagram of a Positive Edge Triggered D-Flip Flop using D-Latch.
 - Explain Euler Path solution of a CMOS gate which represents (c) function f = (AB+C)! (! Means Bar) and draw Stick Diagram of the same CMOS gate based on Euler Path Solution.

$$3 + 3 + (3 + 3) = 12$$

B.TECH/ECE/6TH SEM/ECEN 3201/2019

- Draw Layout of CMOS inverter using Standard Cell Layout Topology 5. (a) and show all the layers.
 - (b) What is the difference between "Micron based Design Rule" and "Lambda Based Design Rule"?
 - (c) Draw schematic and Stick Diagram of 2 input NAND gate.

4 + 3 + 5 = 12

Group - D

- What do you mean by Bit Swizzling? State with example the types of 6. (a) circuit modelling using HDL.
 - (b) Write an HDL module for a 2:4 decoder.
 - (c) Discuss the limitations of RTL synthesis.

(2 + 4) + 4 + 2 = 12

- 7. (a) Write the verilog code for a 4-bit counter.
 - (b) Write a verilog program for a Moore machine.
 - (c) What is compaction?

4 + 6 + 2 = 12

Group - E

Find the test vector of the following circuit using D-algorithm. Write 8. (a) the logic statements clearly.

- What do you understand by transistor fault? Write the truth -table (b) for the fault-free and faulty Nor gate considering all the MOScomponents are at stuck on and stuck off fault one at a time.
- (c) What is path delay fault?

5 + 5 + 2 = 12

- 9. (a) Discuss the different types of bridging faults with the help of necessary diagrams.
 - (b) Design the block diagram of a test generator for a 4K×32 static RAM. 6 + 6 = 123 ECEN 3201

ECEN 3201