## B.TECH/CSE/8<sup>TH</sup> SEM/ECEN 4283/2019 VLSI TESTING AND VERIFICATION (ECEN 4283)

| Tiı                                                                              | ne Allo                                                                                                                             | tted : 3 hrs Full Marks : 70                                                                                                                                                                                    |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Figures out of the right margin indicate full marks.                             |                                                                                                                                     |                                                                                                                                                                                                                 |  |  |  |
|                                                                                  | Candidates are required to answer Group A and<br><u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group. |                                                                                                                                                                                                                 |  |  |  |
| Candidates are required to give answer in their own words as far as practicable. |                                                                                                                                     |                                                                                                                                                                                                                 |  |  |  |
| Group – A<br>(Multiple Choice Type Questions)                                    |                                                                                                                                     |                                                                                                                                                                                                                 |  |  |  |
| 1.                                                                               | Choose                                                                                                                              | the correct alternative for the following: <b>10 × 1 = 10</b>                                                                                                                                                   |  |  |  |
|                                                                                  | (i)                                                                                                                                 | $ \begin{array}{lll} \mbox{For Sub Micron Technology } L_{gate} & (Channel Length) \mbox{ is} \\ (a) > 100 \mbox{ nm} & (b) < 100 \mbox{ nm} & (c) > 1 \mbox{ \mu m} & (d) \mbox{ None of these.} \end{array} $ |  |  |  |
|                                                                                  | (ii)                                                                                                                                | Output of physical design is(a) circuit(b) layout(c) logical model(d) RTL schematic.                                                                                                                            |  |  |  |
|                                                                                  | (iii)                                                                                                                               | In PVT analysis the variational sources considered are,, andtemperature.(a) pressure, volume(b) progress, value(c) process, voltage(d) performance, volume.                                                     |  |  |  |
|                                                                                  | (iv)                                                                                                                                | A MOS device can be used as a resistor in(a) linear Region(b) saturation region(c) sub-threshold condition(d) mask region.                                                                                      |  |  |  |
|                                                                                  | (v)                                                                                                                                 | ATPG is based on<br>(a) stuck at fault (b) BIST (c) bridging fault (d) DFT.                                                                                                                                     |  |  |  |
|                                                                                  | (vi)                                                                                                                                | As per Moore's Law, area of transistor is scaled by<br>(a) 0.5 (b) 0.6 (c) 0.9 (d) 0.7.                                                                                                                         |  |  |  |
|                                                                                  | (vii)                                                                                                                               | A short between two elements is referred to as<br>(a) timing fault (b) bridging fault (c) series fault (d) decision fault.                                                                                      |  |  |  |
|                                                                                  | (viii)                                                                                                                              | The noise immunity of the circuit with noise margin.<br>(a) increases (b) decreases (c) is constant (d) zeros.                                                                                                  |  |  |  |
|                                                                                  | (ix)                                                                                                                                | CMOS stands for Metal Oxide Semiconductor<br>(a) Complementory (b) Common (c) Curious (d)Controlled.                                                                                                            |  |  |  |

| B.TECH/CSI | E/8 <sup>TH</sup> SEM/ECEN 4283/2019                                                                                                         |                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| (x)        | (a) logic design<br>(c) layout design                                                                                                        | (b) circuit design<br>(d) architecture design.      |
|            | Gi                                                                                                                                           | coup – B                                            |
| 2. (a)     | Explain with schematic the operation of a CMOS inverter. Describe its VTC characteristics. What are its advantages over other MOS inverters? |                                                     |
| (b)        | Design a CMOS based 2 inp and nMOS network.                                                                                                  | ut NOR gate, explaining operation of the pMOS       |
|            |                                                                                                                                              | 7 + 5 = 12                                          |
| 3. (a)     | Implement 2 input AND gate                                                                                                                   | e using Pass Transistor Logic.                      |
| (b)        | Implement 2 input XOR gate                                                                                                                   | using Transmission Gate (TG) Logic.<br>6 + 6 = 12   |
|            | G                                                                                                                                            | roup – C                                            |
| 4. (a)     | Sketch the Y chart for simpli                                                                                                                | fied VLSI design flow in three domains.             |
| (b)        | In VLSI, what are full-custom and semi-custom designs and design with FPGA?                                                                  |                                                     |
| (c)        | In VLSI design, explain the c                                                                                                                | oncepts of regularity, modularity, and locality.    |
|            |                                                                                                                                              | 4+4+4=12                                            |
| 5. (a)     | What is Moore's law?                                                                                                                         |                                                     |
| (b)        | Draw cross sectional diagra                                                                                                                  | m of a CMOS Inverter.                               |
| (c)        | Draw schematic diagram of                                                                                                                    | a 3-input NAND Gate.                                |
| (d)        | Draw stick diagram of same                                                                                                                   | e 3-input NAND gate.                                |
|            |                                                                                                                                              | 2+3+2+5=12                                          |
|            | Gr                                                                                                                                           | oup – D                                             |
| 6. (a)     | What are DRC and LVS?                                                                                                                        |                                                     |
| (b)        | Why do we need post layout                                                                                                                   | timing verification?                                |
| (c)        | Define setup time and hold t                                                                                                                 | ime of a D-Latch.                                   |
| (d)        | What is process variation?                                                                                                                   |                                                     |
|            |                                                                                                                                              | 3+3+3+3=12                                          |
| 7 (a)      | Explain the effects of gate d                                                                                                                | elay fault? What is the critical path in a circuit? |

(a) Explain the effects of gate delay fault? What is the critical path in a circuit?What is meant by the capture path?

(b) What is clock skew and what are the sources of clock skew?

8 + 4 = 12

## B.TECH/CSE/8<sup>TH</sup> SEM/ECEN 4283/2019

## Group – E

- 8. (a) Why is post Si debugging needed ?
- (b) Explain D-Algorithm with an example circuit.

6 + 6 = 12

9. (a) Using ATPG time frame expansion method, generate primary input test patterns for the S-a-0 fault, at the line j in the sequential circuit given below.



(b) Using ATPG path sensitization, generate primary input test patterns for the S-a-0 fault, at line d in the combinational circuit given below.



8+4 = 12