B.TECH/CSE/6TH SEM/ELEC 3001/2019

set matrix.

(b)

7. (a) Determine complete incidence matrix from the oriented graph given in Fig.9.

From the above graph select

the tree shown in Fig.10 and

compute tie-set matrix and cut-

- 8. (a) Define h-parameters of a two port network.
 - (b) Determine the Zparameters for the circuit shown in Fig.11. $V_{1} \neq 4\Omega \qquad V_{2}$ -*Fig.11*

119.11

- (c) Find out the condition of symmetry for ABCD parameters. 2+6+4=12
- 9. (a) Draw and analyze the 2nd order high pass filter and also find out the transfer function and cut-off frequency of that filter.
 - (b) Design a 1^{st} order low pass filter of cut-off frequency 159Hz and pass band gain 10. Take C = 0.047μ F.

(2 + 5 + 1) + 4 = 12

B.TECH/CSE/6TH SEM/ELEC 3001/2019

CIRCUIT THEORY (ELEC 3001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) How many fundamental cut-sets will be generated for a graph containing 'n' number of nodes and 'b' number of branches?
 (a) n + 1
 (b) n 1
 (c) b n + 1
 (d) b + n 1
- (ii) In PSPICE Voltage Controlled Current Source is represented by (a) E (b) F (c) G (d) H.
- (iii) A two port network is reciprocal if (a) AD - BC = 1 (b) A = D(c) A = C (d) AB - CD = 1.
- (iv) Damping constant of an over damped system is
 (a) less than 1
 (b) greater than 1
 (c) 1
 (d) 0.
- (v) Application of Thevinin's theorem to a circuit yields
 (a) equivalent current source and impedance in series
 (b) equivalent current source and impedance in parallel
 (c) equivalent voltage source and impedance in series
 - (d) equivalent voltage source and impedance in parallel.
- (vi) Input driving point impedance (when output side of a two port network is kept open) is

(a)
$$Z_{11}$$
 (b) Z_{12} (c) Y_{22} (d) Y_{21} .

(vii) Laplace transform of a unit impulse function is

(b)
$$\frac{1}{s^2}$$
 (c) 1 (d) $\frac{2}{s^3}$.

ELEC 3001

ELEC 3001

(a) $\frac{1}{s}$

1

B.TECH/CSE/6TH SEM/ELEC 3001/2019

analysis.

2. (a)

(b)

- (viii) The cut-off frequency of a Low Pass Filter with R-C configuration is 600 Hz. Assuming R = 400, what would be the value of C? (a) 8.14×10^{-4} F (b) 4.17×10^{-6} F (c) 1×10^{-3} F (d) 6.63×10^{-7} F
- (ix) A function in s-domain is given by $F(s) = \frac{s+1}{s(s+2)}$. The initial value of F(s) is (a) 1 (b) 0 (c) 2 (d) 3.
- (x) Condition of symmetry in Z parameter is (a) $Z_{11} = Z_{22}$ (b) $Z_{12} = Z_{21}$ (c) $Z_{11} = Z_{12}$ (d) $Z_{21} = Z_{22}$.

Group - B

resistor of the circuit in Fig.2 by Superposition theorem.

Find the power loss in 5Ω

Find the current I in the circuit

shown in Fig.1 using nodal

- 6 + 6 = 12
- 3. (a) What is a dependent source? How it is different from independent source?
 - (b) In the circuit shown in Fig.3 calculate the current through 6Ω resistor by Thevenin's Theorem.

Group – C

- (a) Define 'step' function and 'delayed step' function. Find Laplace transform of them.
 - (b) Find Inverse Laplace Transform of : $\frac{S}{(S+5)(S+6)}$.

B.TECH/CSE/6TH SEM/ELEC 3001/2019

(c) Find Laplace transform of the given signal shown in Fig.4.

- 5. (a) A DC voltage source of 'V' volt is applied to a series RLC circuit. Derive the condition of over damping for the circuit considering output voltage across the capacitor. Also draw the nature of output signal.
 - (b) In the circuit shown in Fig.5 given below, the switch is moved from position 1 to 2 at t = 0, a steady state having previously been established at position 1. Solve for the current i(t).

6 + 6 = 12

Group – D

6. (a) Write SPICE program to find the current I and voltage at node 3 of the circuit shown in Fig.6.

(b) A pulse input as shown in Fig.7 is applied to RLC series circuit of Fig.8. Write a SPICE program to calculate and plot the transient response from 0 to 400μsec with a time increment of 1 μsec. The capacitor voltage and the current through the resistance are to be plotted.

ELEC 3001

2

ELEC 3001

3