B.TECH/CSE/4TH SEM/MATH 2201/2019

NUMBER THEORY & ALGEBRAIC STRUCTURES (MATH 2201)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) If the cyclic group *G* contains 12 distinct elements then the number of possible generators of the group is
 (a) 1
 (b) 2
 (c) 3
 (d) 4.
 - (ii) The linear congruence $5x \equiv 3 \pmod{11}$ has (a) unique solution modulo 11 (b) no solutions (c) 10 incongruent solutions (d) 11 incongruent solutions.
 - (iii) Consider the lattice (S, ≤), where S = {1,2,4,5,8,9} and '≤' denotes usual "less than or equal to" relation. Then
 (a) 4 ∧ (5 ∨ 9) = 2 ∨ (2 ∧ 8)
 (b) 4 ∧ (5 ∨ 9) = 2 ∨ (2 ∧ 5)
 (c) 4 ∧ (5 ∨ 9) = (2 ∨ (2 ∧ 8)) ∨ 4
 (d) 4 ∧ (5 ∨ 9) = (2 ∨ (2 ∧ 8)) ∨ 5.
 - (iv) The number of generators of an infinite cyclic group is
 (a) 1
 (b) 2
 (c) 0
 (d) infinite.
 - (a) 2 (b) 14 (c) 7 (d) 5. (vi) If gcd(a,b)=d then gcd(a/d, b/d) is
 - (a) d (b) 0 (c) 1 (d) a/d.
 - (vii) A group contains 12 elements. Then the possible number of elements in a subgroup is
 (a) 3
 (b) 5
 (c) 7
 (d) 11.
 - (viii) The number of solutions x^2 -[4]x+[3]=[0] in \mathbb{Z}_{12} is (a) 2 (b) 4 (c) 6 (d) 8.

(ix) Let $R = \{a + \sqrt{2}b : a, b \in \mathbb{Q}\}$. Then *R* is a field with respect to usual addition and multiplication. If an element of *R*, $a + \sqrt{2}b \neq 0$, then its multiplicative inverse is given by

(a)
$$\frac{1}{(a+\sqrt{2}b)^2}$$

(b) $\frac{1}{a-\sqrt{2}b}$
(c) $\frac{a}{a^2-2b^2} + \sqrt{2}\frac{(-b)}{a^2-2b^2}$
(d) $\frac{a}{a^2-2b^2} + \sqrt{2}\frac{b}{a^2-2b^2}$.

(x) A zero divisor in \mathbb{Z}_{12} under addition and multiplication modulo 12 is (a) [2] (b) [5] (c) [7] (d) [11].

Group – B

- 2. (a) Find the remainder when $2^{1000000}$ is divided by 17.
 - (b) Show that 32 divides $(a^2+3)(a^2+7)$, where a is an odd integer.
 - (c) Define a totally ordered set with an example.

5 + 5 + 2 = 12

- 3. (a) Find integers x, y, z satisfying gcd(198,288,512) = 198x + 288y + 512z.
 - (b) Solve the congruence $72x \equiv 18 \pmod{42}$. Mention the incongruent solutions modulo 42.

6 + 6 = 12

Group – C

- 4. (a) Give examples of binary operations which are not (i) associative (ii) commutative.
 - (b) Write down the multiplicative Cayley table for U(8).
 - (c) Let *G* be group. If a, $b \in G$, then prove that $(ab)^{-1}=b^{-1}a^{-1}$.
 - (d) Give two examples of finite groups of order at least 4 and write down the corresponding Cayley tables.

2 + 3 + 3 + 4 = 12

- 5. (a) Prove that if *n* is a positive integer such that $n \ge 3$, then the symmetric group S_n is a noncommutative group.
 - (b) Let two permutations be given by $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 7 & 5 & 2 & 3 & 1 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 6 & 7 & 3 & 5 & 2 \end{pmatrix}$ (i) Write α as a product of disjoint cycles.

MATH 2201

2

1

B.TECH/CSE/4TH SEM/MATH 2201/2019

- (ii) Write β as a product of 2 cycles.
- (iii) Is β an even permutation?
- (iv) Is α^{-1} an even permutation?

$$4 + (2 + 2 + 2 + 2) = 12$$

Group - D

6. (a) Let G be a group and a be an element of G such that O(a) = n. Prove that
(i) If a^m = e for some positive integer m, then n divides m.

(ii) For every positive integer t, $O(a^t) = \frac{n}{\gcd(t,n)}$

(b) Let *H* be a subgroup of a group *G*. Show that for any $g \in G$, $K = gHg^{-1} = \{ghg^{-1}: h \in H\}$ is a subgroup of *G*.

$$(3+4)+5=12$$

- 7. (a) Let $G = \langle a \rangle$ be a cyclic group of order n. Then for any integer r, $1 \le r \le n$, a^r is a generator of G iff gcd(r, n)=1.
 - (b) Prove that any two right or left cosets of a subgroup are either disjoint or identical.

6 + 6 = 12

Group – E

- 8. (a) Determine whether the given map ϕ is a homomorphism: $\phi: G \to G_1$ where $G = S_3, G_1 = \{1, -1\}$ and $\phi(\sigma) = 1$ if σ is even = -1 if σ is odd
 - (b) Find the units in the ring \mathbb{Z}_8 .
 - (c) Let R be a commutative ring with characteristic p, p is prime. Prove that $(a+b)^p=a^p+b^p$, $a,b \in R$.

5 + 2 + 5 = 12

- 9. (a) Give an example of a finite ring *R* with unity and a subring *S* of *R* such that *S* contains no unity. Provide appropriate justifications.
 - (b) Prove that the ring $(\mathbb{Z}_n, +, \cdot)$ is an integral domain if and only if *n* is prime.

6 + 6 = 12