B.TECH/CHE/6TH SEM/CHEN 3232/2019

7. For a steady state incompressible fluid flow through the geometry shown in Fig. 4, form a solution matrix using upwind scheme for the two intermediate nodes in between 1 and 2. Given: $A = A_0 - |K|x$, u_1 and u_2 are the respective

velocities at node 1 and 2 respectively, p_1 and p_2 are the pressure values read at node 1 and 2 respectively.

8. A liquid of density 1000 kg/m³ and viscosity 0.001 Pa.s is flowing over the inclined plane as shown in Fig. 5. Using artificial compressibility method, develop a solution matrix for evaluating pressure and velocity at three intermediate nodes. Assume the flow is in streamlined condition. Given: $\sqrt{2}$ sound velocity =1520 m/s.

12

9. Using SIMPLE-C algorithm develop the solution matrix for the problem given in Fig. 6 after considering three intermediate nodes. Assume the flow is at steady state condition. Evaluate the pressure and velocity at the nodes after execution of one iteration.

B.TECH/CHE/6TH SEM/CHEN 3232/2019

COMPUTATIONAL FLUID DYNAMICS (CHEN 3232)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - Central difference scheme can be applied for Peclet number (i) (a) greater than 2 (b) less than 2 (c) equal to 2 (d) both (a) and (c).
 - For creeping flow, the Reynold's number is less than or equal to (ii) (a) 0.1 (b) 1.0 (c) 2.0 (d) 0.5.
 - (iii) In SIMPLE-C algorithm, the deviation in the neighbourhood property against a node
 - (a) is equal to the deviation in the property at the node
 - (b) is more than the deviation in the property at the node
 - (c) is equal to the deviation in the property at the node
 - (d) is equal to the deviations in the pressure gradient at the node.
 - (iv) The validity of periodic boundary condition is justified for
 - (a) a finite domain on the control volume
 - (b) an infinite domain on the control volume
 - (c) an infinite domain on the control surface
 - (d) both (b) and (c).
 - (v) Marching problem mainly attributes to (a) parabolic equation (b) hyperbolic equation (c) elliptical equation (d) Poisson equation.
 - (vi) The artificial compressibility factor is defined as
 - (a) the square of the acoustic velocity
 - (b) the square root of the acoustic velocity
 - (c) the cube root of the acoustic velocity
 - (d) the cube of the acoustic velocity.

CHEN 3232

CHEN 3232

1

B.TECH/CHE/6TH SEM/CHEN 3232/2019

- (vii) During multigrid method the internodal distance at level 2 of coarse grid is equal to
 - (a) twice of fine grid internodal distance
 - (b) four times of fine grid internodal distance
 - (c) eight times of fine grid internodal distance
 - (d) thirtytwo times of fine grid internodal distance.
- (viii) The stability of the scheme is achieved when amplification factor is
 (a) equal to one
 (b) greater than 1
 (c) less than 1
 (d) both (a) and (c).
- (ix) In finite volume method, every property is estimated ______ of the control volume.
 - (a) at the centre
 - (b) at the faces
 - (c) both (a) and (b)
 - (d) at any interpolated point between the centre and face.
- (x) Acceptability of meshing can only be ensured when the orthogonality of the meshing is in the range

(a) 0.01-0.10	(b) 0.10-0.15	(c) 0.15-0.20	(d) 0.01-0.15.
---------------	---------------	---------------	----------------

Group – B

Derive one convection-diffusion type equation for the one directional fluid flow between two parallel plates (Fig. 1) of width 'w' m and 'D' m apart. The velocity of the fluid at the leading edge is u m/s. The viscosity and density of the fluid are μ Pa.s and ρ kg/m³ respectively.

12

3. Define the computational domain and write the full system of governing equations and boundary conditions for the following situations. In all of them, consider a long straight duct with smooth walls and uniformly distributed circular pipes crossing the duct in the direction perpendicular to the duct axis and parallel to one set of walls:

CHEN 3232

2.

2

B.TECH/CHE/6TH SEM/CHEN 3232/2019

- (i) There is a flow of air along the duct. Air can be assumed incompressible and having constant temperature equal to the temperature of the duct walls and pipes.
- (ii) The same as in (i), but now temperature varies. The cylinders are maintained at constant temperature T_{c_i} which is significantly higher than the air temperature T_i at the duct inlet. The duct walls are thermally perfectly insulating. Air is still assumed incompressible.
- (iii) The duct is now filled with a solid material of density ρ , specific heat *C*, and conductivity κ . Temperature of the cylinders is T_c and the temperature of the walls is T_w .

(4+4+4) = 12

12

Group – C

4. For an unsteady state heat conduction problem given by $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$, find out

the value of temperature (T) at three equi-spaced nodes on a 4 m iron rod after 0.2 s using implicit scheme. Given: $T(x = 0) = 90^{\circ}C$; $T(x = 4) = 30^{\circ}C$; $\alpha = 2.3 \times 10^{-5} \text{ m}^2/\text{s}$; $\Delta t = 0.1 \text{ s}$.

5. The convection-diffusion equation that is applicable here is given as below, $\frac{\partial \varphi}{\partial t} = \alpha \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right)$. Applying

ADI scheme evaluate the property value at 1, 2, 3 and 4 node at time 1 s. $\Delta t = 0.5$ s; $\Delta x = 0.1$ cm; $\Delta y = 0.1$ cm.

Group – D

6. In Fig. 3 air flows at a speed of 3 m/s over a flat surface of a volatile matter 'A'. The concentration boundary layer grows with a constant slope leading to a maximum thickness (δ) as shown in the figure. Assuming the process is at the steady state, formulate an error matrix for the next level coarse grid using multigrid technique. Given: $\Delta x = 0.125$ m; $\Delta y = 0.05$ m; diffusion coefficient of A in air at 25°C and 1 atm = 8.3 × 10⁻⁶ m²/s.

