Group - E

- 8. (a) How do you define stable and unstable responses of process? What is the difference between open-loop unstable and closed-loop unstable?
 - (b) Write the merits and demerits of Routh-Hurwitz stability criteria for control system. Derive the stability condition using Routh-Hurwitz criterion for the following characteristic polynomial equation, $s^3 + 2s^2 + (2 + k_c)s + \frac{k_c}{\tau_I} = 0.$

$$(2+1)+(3+6)=12$$

- 9. (a) Write the difference between Bode plot and Nyquist plot. Write the significance of gain margin.
 - (b) What is cross-over frequency? Discuss the Bode stability plot for the two process connected in series with the transfer function of $G_1(s) = 1/(2s+1)$ and $G_2(s) = 6/(5s+1)$, respectively.

$$(2+2+2)+(2+4)=12$$

B.TECH/CHE/6TH SEM/CHEN 3201/2019

PROCESS DYNAMICS, INSTRUMENTATION AND CONTROL (CHEN 3201)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following:		ng: 10 × 1 = 10
(i)	Mercury- in-glass thermometer is an (a) zero order system (c) second order system	example of (b) first order system (d) none of these.
(ii)) is the largest range of value which the instrument dose not responsible (a) Drift (c) Dead zone	ues of a measured variable to nd. (b) Sensitivity (d) Fidelity.
(iii	Following a step change to a under damped second order system, the rise time will with increase in damping factor (a) increase (b) decrease (c) not change (d) oscillate.	
(iv	 For measuring the temperature of a most suitable instrument is (a) platinum resistance thermometer (c) bimetallic thermometer 	high temperature furnace, the (b) thermocouple (d) optical pyrometer.
(v)	Decay ratio is equal to (a) overshoot (c) (overshoot) ^{0.5}	(b) (overshoot) ² (d) none of these.
(vi	A negative gain margin expressed in system (a) stable (c) critically damped	decibels means a/an (b) unstable (d) none of these.

1.

1

B.TECH/CHE/6TH SEM/CHEN 3201/2019

- (vii) Which of the systems having following transfer functions is stable?
 - (a) $1/(s^2+2)$

(b) $1/(s^2-2s+3)$

(c) $1/(s^2+2s+2)$

- (d) Exp $(-20s)/(s^2+2s-1)$.
- (viii) A proportional controller with a gain of K_c is used to control a first order process. The offset will increase, if
 - (a) K_c is reduced
 - (b) K_c is increased
 - (c) integral control action is introduced
 - (d) none of these.
- (ix) Routh test
 - (a) cannot determine as to how many roots of the characteristics equation have positive real roots
 - (b) cannot be used to test the stability of a control system containing transportation lag
 - (c) criterion is not applicable to systems with polynomial characteristic equation
 - (d) criterion provides information about the actual location of roots.
- (x) At very large values of radian frequency, phase lag of the frequency response of a second order system to a sinusoidal forcing function approaches to
 - (a) 30°

(b) 90°

(c) 180°

(d) 120°.

Group - B

- 2. (a) Explain the working principle of resistance temperature detector. Also state its advantages and disadvantages.
 - (b) A mercury-in-glass thermometer having a time constant of 0.12 min. and equilibrated with ambient temperature of 25°C has suddenly been placed in a constant temperature bath maintained at 75°C. Find the error if the reading is taken after 2 min.
 - (c) What do you understand by 'pressure transducer'? What do you understand by 'piezoelectricity'?

$$5 + 4 + (2 + 1) = 12$$

- 3. (a) State the difference in working principle between thermocouple and thermistor. Give example of each type.
 - (b) Mention the pressure range that can be measured by U tube manometer, Bourdon tube, bellows and diaphragm.

B.TECH/CHE/6TH SEM/CHEN 3201/2019

(c) Discuss the working principle of Bourdon tube.

$$6 + 2 + 4 = 12$$

Group - C

- 4. (a) A pure capacitive system can be named as a pure integrator-justify.
 - (b) Two interacting liquid-level tanks are connected in series. The time constants are 1.0 min and 0.7 min., respectively. The cross-sectional area of first and second tanks are 1 m² and 0.8 m², respectively. The resistance in the second tank is I m/m³/min. Obtain the dynamic response of the level in tank 2 if the inlet flowrate to tank 1 is increased by 0.05 m³/min., at time t=0.

$$5 + 7 = 12$$

- 5. (a) Give an example of critically damped system.
 - (b) For a tank of cross-sectional area 100 cm² and inlet flowrate q_i (in cm³/s), the outlet flow rate, q_o (in cm³/s) is related to the liquid height, h (in cm) as $q_o = 2\sqrt{h}$. Obtain the transfer function of the process around the steady-state point, $q_{is} = 16$ cm³/s and $h_s = 35$ cm.
 - (c) Obtain the expression of frequency response from a first order system. How does the amplitude ratio and phase lag of frequency response differ between first order and second order system?

$$1 + 4 + (5 + 2) = 12$$

Group - D

- 6. (a) Deduce the expression of an offset for the servo and regulatory problem for a first order process using proportional control action.
 - (b) Describe the characteristics of ON-OFF and single speed floating controllers.

$$(5+5)+2=12$$

- 7. (a) Shows that the liquid level of a tank with constant discharge at the outlet will be controlled effectively using P-controller.
 - (b) With a block diagram, explain working of cascade process control system. What is wild stream?

$$8 + (3 + 1) = 12$$