B.TECH/BT/6TH SEM/BIOT 3203/2019

BIOREACTOR DESIGN AND ANALYSIS (BIOT 3203)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks. Symbols are of usual significance

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Which type of reactor, aeration is generally accomplished in a separate vessel?
 (a) Fluidised bed
 (b) Trickle bed
 - (c) Packed bed(d) Stirred and air-driven reactor.The approximate doubling time of a microbial culture where specific
 - (ii) The approximate doubling time of a microbial culture where specific growth rate is 0.35/hr. is
 (a) 1 hr
 (b) 3 hr
 (c) 2 hr
 (d) 6 hr.
 - (iii) The best method of control bioreactor system is
 - (a) PI control system(b) PID control system(c) PD control system(d) none of these.
 - (iv) A chemostat can be operated at dilution rate which is
 - (a) higher than the specific growth rate
 - (b) lower than the specific growth rate
 - (c) equal to the specific growth rate
 - (d) not related to the specific growth rate.
 - (v) In which of the following bioreactors, the particles are not immersed in liquid?
 - (a) Airlift bioreactor(b) Stirred vessel(c) Packed bed(d) Trickle bed.
 - (vi) The volumetric mass transfer coefficient is related to

(a) oxygen transfer	(b) packed bed absorption
(c) diffusion rate	(d) none of the above.

B.TECH/BT/6TH SEM/BIOT 3203/2019

- (vii) Immobilized cell reactors for wastewater treatment have the advantage of having/being
 - (a) higher cell concentration
 - (b) more stable and prevent washout
 - (c) higher dilution rate before the cells washout
 - (d) all of the above.
- (viii) Air-lift fermenter may be designed on the basis of
 (a) plug flow
 (b) plug flow with dispersion
 (c) completely mixed system
 (d) segregated model.
- (ix) If the reaction rate doubles as the concentration of the reactant A increases by a factor of 2, what is the order of the reaction with respect to A?
 (a) First order
 (b) Zero order
 (c) Pseudo first order
 (d) none of these.
- (x) The rate limiting step in the movement of oxygen from the gas phase in a bubble to the medium is the movement of oxygen molecules through

 (a) gas-liquid interface
 (b) bulk liquid
 (c) gas phase
 (d) none of these.

Group – B

2. (a) Consider a culture of bacteria that secrete a product in a chemostat operated at steady state. The specific growth rate of biomass is described by the Monod equation satisfactorily. Rate of product formation is described by Luedeking-Pirate kinetics.

 $\frac{dP}{dt} = (\alpha \mu + \beta)X$

This system is well characterized. Values of the different constants are as follows:

$$Y_{X/S} = 0.4 \text{ g/g}, \ \mu_{\text{max}} = 0.7 \text{ h}^{-1}, \ K_S = 0.2 \text{ g/L}, \ \alpha = 0.2 \text{ g/g}, \ \beta = 0.3 \text{ g/g.h},$$

 $Y_{P/S} = 0.8 \text{ g/g}, \ S_0 = 10 \text{ g/L}, \ F = 15 \text{ L/hr}, \ V = 500 \text{ L}.$

If the system is operated at steady state and the liquid feed to the chemostat is sterile, then calculate the following:

- (i) Steady state substrate concentration.
- (ii) Biomass concentration at steady state.
- (iii) What is the productivity of the process?
- (iv) If the volume of the reactor is kept constant, what value of the flow rate would cause washout of the reactor?

2

- (b) What is the significance of dispersion number and Sherwood number? 8 + 4 = 12
- 3. (a) What are the parameters that affect the volumetric mass transfer coefficient?
 - (b) A fermentor has to attain $k_{La} = 25$ hr⁻¹. With its maximum agitator speed at 0.5 m³ gas/min. *E. Coli* with specific oxygen consumption rate, $q_{o_2} = 10$ moles of O_2/kg dry wt cells are to be cultured. The critical dissolved oxygen concentration is 0.2 g/m³. The solubility of oxygen from air in the fermentation broth is 8 g/m³ at 30°C.
 - (i) What maximum concentration of *E.Coli* can be sustained in the reactor?
 - (ii) What concentration of *E.Coli* can be attained if pure oxygen is used? 5 + 7 = 12

Group – C

4. (a) Find the overall order of the irreversible reaction $-2H_2 + 2NO \rightarrow N_2 + 2H_2O$ from the following constant-volume data using equimolar amounts of hydrogen and nitric oxide:

Total pressure, mm $ m H_{g}$	200	240	280	320	360
Half-life, sec	265	186	115	104	67

(b) Derive first order rate equation from Michaelis-Menten equation

10 + 2 = 12

5. A mixed flow reactor (2 m³) processes an aqueous feed (100 liter/min) containing reactant A (C_{AO} = 100 m mol/liter). The reaction is reversible and presented by

 $A \leftarrow \rightarrow R$, -r_A = 0.04C_A - 0.01C_R mol / liter. min.

What is the equilibrium conversion and the actual conversion in the reactor? $$\mathbf{12}$$

Group – D

6. (a) The concentration readings given below represent a continuous response to a pulse input into a closed vessel.

t (min.)	0	5	10	15	20	25	30	35	
C _{pulse} (gm/lit)	0	3	5	5	4	2	1	0	
This vessel is to be used as a reactor for the decomposition of a liquid "A".									

A \rightarrow Products, $-r_A = K C_A$, $K = 0.307 min^{-1}$

BIOT 3203

3

Estimate the fraction of the reactant unconverted in the real reactor and compare this with the fraction unconverted in a P F R of same size. 3+9=12

7. (a) Substrate A and enzyme E flow through a mixed flow reactor (V = 6 liter). From the entering and leaving concentrations and flow rate find a rate equation to represent the action of enzyme on substrate.

$C_{\scriptscriptstyle E0}$,	$C_{\scriptscriptstyle A0}$,	C_{A} ,	ν,
mol/liter	mol/liter	mol/liter	liter/hr
0.02	0.2	0.04	3.0
0.01	0.3	0.15	4.0
0.001	0.69	0.60	1.2

(b) Define dispersion number.

9 + 3 = 12

Group – E

- 8. (a) What are the limitations of cell immobilization? What is active and passive cell immobilization?
 - (b) What is membrane fouling? What are the two important configurations of membrane bioreactor?

(3+3) + (2+4) = 12

9. (a) In a fed-batch culture operating with intermittent addition of glucose solution, values of the following parameters are given at time t= 2 h, when the system is in quasi-steady state.

$$V = 1000 \text{ ml}, \ F = \frac{dV}{dt} = 00 \text{ ml/h}, S_0 = 100 \text{ g glucose/l}, \ \mu_{\text{max}} = 0.3 \text{ h}^{-1},$$

$$K_s = 0.1 \text{ g glucose/l}, \ Y_{X_{L}}^{M} = 0.5 \text{ gdw cell/g glucose}, \ X_0^{t} = 30 \text{ g}$$

- (i) Find initial volume of the culture (V₀).
- (ii) Determine the concentration of growth-limiting substrate in the vessel at quasi steady state.
- (iii) Determine the concentration and total amount of biomass in the vessel at t = 2 h (at quasi-steady state).
- (iv) If $q_P = 0.2$ g product/g cells, $P_0 = 0$, determine the concentration of product in the vessel at t = 2 h.
- (b) What is a photobioreactor? What are the culturing techniques in a photobioreactor?

8 + (1 + 3) = 12

4