M.TECH/ECE/2ND SEM /ECEN 5201/2016

(vi) The core of Dispersion Compensating Fiber (DCF) is fabricated using the core material

	(a) $P_2O_5 - SiO_2$ (c) $P_2O_5 - B_2O_3$	Core 3– SiO ₂ Core	(b) $GeO_2 - (d) B_2O_3 - (d) $	SiO2 Core SiO2 Core		
(vii)	In a LiNbO3 based phase modulator, the phase shift $\Delta\Phi$ is related to index change Δn and wavelength λ by					
	(a) ΔΦ α λ/Δr	1	(b) ΔΦ α λ	Δn		
	(c) $\Delta \Phi = \Delta n / \lambda$		(d) $\Delta \Phi = (\Delta n / \lambda)^2$			
(viii)	The value of system margin in a optical link for power budget calculation is typically taken to be					
	(a) 6dB	(b) 2dB	(c) 10dB	(d) 15dB		

- (ix) A power level of 0 dBm corresponds to (a) 0 mW (b) 0.1 mW (c) 1mW (d) 10 mW
- (x) The basic line rate for an STM-N (Synchronous Digital Hierarchy, SDH level) is 39813.12 Mb/s. The SDH level is
 (a) STM-4
 (b) STM -16
 (c) STM -64
 (d) STM -256

Group - B

- 2. (a) What is meant by the term "Threshold current" in a semiconductor laser? Draw the variation of the light intensity vs. drive current in a semiconductor laser and locate the threshold current in the diagram.
 - (b) The threshold current of a semiconductor laser diode increases by a factor 2.3 when the temperature is increased by 42°C. Find the characteristics temperature T_0 of the laser in the equation $I_{th} = I_{tho} \exp(T/T_o)$ where T is the temperature, I_{th} is the threshold current & I_{tho} is a constant

6 + 6 = 12

- 3. (a) Draw the variation of refractive index profile in the core of a single mode dispersion shifted optical fibre.
 - (b) Draw and explain the variation of absorption coefficient with wavelength for suitable semiconductors which can be used for fibre optic communication in the wavelength rage from 0.8 μ m to 1.6 μ m. **6** + **6** = **12**

M.TECH/ECE/2ND SEM /ECEN 5201/2016

Group - C

- 4. (a) Draw a block schematic showing a digital point-to-point link. Show the link power budget considering the optical power loss model of the link.
 - (b) In an optical link operating at 1399 nm, the laser diode emits 1mW of power from an attached fiber flylead to the link. A p-i-n photodiode with a sensitivity of -20dBm operates at 2.5 Gb/s. Two connectors each of 1 db loss is connected at the two ends of the link. Find the maximum link length possible considering that the optical fiber has a loss of 0.45 dB/km and the system margin of 6 dB.

6 + 6 = 12

- 5. (a) What do you understand by dispersion compensation? Discuss how dispersion compensation is carried out.
 Draw the refractive index profile of a dispersion compensation fiber. Find the value of Figure-of-Merit (FOM) of a DCF.
 - (b) Draw a block schematic diagram showing a long haul system optical link with In-Line amplifiers and hence explain its important features. 6+6=12

Group - D

- 6. (a) Draw the block schematic of coherent lightwave communication system. Derive an expression for the photocurrent in a homodyne system. Discuss how the S/N ratio of a homodyne system can be substantially improved?
 - (b) Draw and explain the principle of operation of $LiNbO_3$ waveguide modulator in MAC gender configuration for ASK modulation format. 6+6=12
- 7. (a) What do you understand by the term wavelength division multiplexing (WDM)? Discuss a typical arrayed waveguide grating (AWG) which can be used as a multiplexer or a demultiplexer or a drop insert element.
 - (b) What is a tunable filter? Show the spectral profile of a fibre Bragg grating filter. Discuss how the wavelength can be adjusted.

6 + 6 = 12

M.TECH/ECE/2ND SEM /ECEN 5201/2016

Group - E

- 8. (a) Discuss the functional concept of an optical add drop Multiplexer (OADM) for SONET / SDH applications.
 - (b) Draw a block schematic diagram showing DWDM deployment of n wavelength in an OC-192 (STM 64) trunk ring.

6 + 6 = 12

- 9. (a) What do you understand by the term Soliton communication? Distinguish between fundamental and higher order Soliton.
 - (b) Discuss the temporal changes in a narrow high intensity pulse that is subject to scar effect as it propagates through a non linear dispersive fibre that has positive group velocity dispersion (GVD) parameter. 6+6=12

M.TECH/ECE/2ND SEM /ECEN 5201/2016 2016

PHOTONICS AND OPTICAL COMMUNICATION (ECEN 5201)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	10 × 1=10	
	(i)	Which of the following material is suitable for fabricating 850 nm	g an LED at

(a) Si	(b) InGaP	(c) Ge	(d) GaAs

- (ii) Which of the following material is suitable as an optoelectronic detector at 1550 nm
 (a) Si
 (b) GaAs
 (c) Ge
 (d) CdS
- (iii) The dark current (in units of nA) for a germanium APD lies in the range of

 (a) 0.1 to 1.0
 (b) 1.0 to 10.0
 (c) 50 to 500
 (d) 2000 to 5000
- (iv) The no. of modes in a multimode step index fiber is typically given by (in terms of V, the modified frequency parameter) as

(a)
$$\frac{V}{2}$$
 (b) $\frac{V^2}{4}$ (c) $\frac{V^2}{3}$ (d) $\frac{V^2}{2}$

- (v) The rare earth material suitable for doping glass fibers for operation as an optical amplifier at 1550 nm is
 - (a) Ytterbium (Yb) (b) Praseodymium (Pr) (c) Thulium (Tm) (d) Frbium (Fr)
 - (c) Thulium (Tm) (d) Erbium (Er)

ECEN 5201