M.TECH/ECE/1st SEM/ECEN 5103/2017 ADVANCED MICROWAVE COMMUNICATION (ECEN 5103)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

<u>Any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: **10 × 1=10**
 - (i) Travelling wave tubes are preferred in radar applications over magnetrons because they have
 (a) wider bandwidth
 - (b) greater efficiency
 - (c) lower noise
 - (d) capacity to generate larger duty cycle.
 - (ii) Which of the following microwave tubes uses an axial magnetic field and a radial electric field?
 - (a) klystron amplifier(b) travelling wave tube(c) reflex klystron(d) magnetron.

 - (iv) If only the position of the port of a network is changed, then its scattering parameter undergoes a

(a) change in magnitude	(b) change in phase
(c) change in both magnitude and phase	(d) no change.

- (v) The performance of an antenna is independent of frequency if the antenna geometry or profile can be completely specified in terms of angles. This is known as:
 - (a) babinet's principle(b) rumsey's principle(c) booker's principle(d) fermat's principle.

M.TECH/ECE/1st SEM/ECEN 5103/2017

- (vii) Radiation resistance of an antenna depends upon:
 (a) operating wavelength
 (b) operating frequency
 (c) input power
 (d) none of these.
- (viii) If the angle between the two arms of a simple dipole is reduced from 180° to 90°. What happens to its radiation resistance

 (a) increases
 (b) decreases
 (c) remains the same
 (d) increases then decreases.
- (ix) The skip distance is
 (a) same for each layer
 (b) independent of the state of ionization
 (c) independent of frequency
 (d) independent of transmitted power.
- (x) In microwave communication links, path diversity and frequency diversity are adopted to overcome fading in the path due to

 (a) rain attenuation
 (b) polarization shifting
 (c) phase lagging
 (d) fog accumulation.

Group - B

- 2. (a) With suitable figure, describe the operating principle of a tunnel diode.
 - (b) A shunt-mounted PIN diode in a TEM transmission line having characteristic impedance $Z_0 = 50$ ohms can be represented by a shunt impedance Z = R + jX. Calculate the insertion loss and isolation at a frequency $f_0 = 2$ GHz. The forward resistance $R_f = 0.1 \ \Omega$ and capacitance $C_j = 0.02 \ pF$.
 - (c) Derive an expression for the junction capacitance of varactor diode. 4 + 4 + 4 = 12
- 3. (a) Discuss why compound semiconductor MESFETs are preferred over Si MESFETs.
 - (b) With the help of the small signal equivalent circuit of a MESFET explain qualitatively why they are useful in microwave applications compared to conventional JFET.

ECEN 5103

M.TECH/ECE/1st SEM/ECEN 5103/2017

M.TECH/ECE/1st SEM/ECEN 5103/2017

(c) A GaAs MESFET has the following parameters :

 $R_g = 2.8\Omega$; $R_i = 2.45\Omega$; $R_d = 500\Omega$; $R_s = 2.45\Omega$; $g_m = 54mS$ and $C_{gs} = 0.5pF$ Calculate the cut-off frequency and the maximum operating frequency. 2 + 6 + (2 + 2) = 12

Group - C

- 4. (a) A series reactance Z = jX is connected between two lines with different characteristic impedances Z_1 and Z_2 . Find the S-matrix of the junction.
 - (b) A rectangular waveguide resonator of cross-sectional dimensions 2.3 cm \times 1 cm is filled with air. What should be the length of the resonator for TE₁₀₁ mode resonance at 10 GHz? What is the next higher mode of resonance and the corresponding resonant frequency? 5 + 7 = 12
- 5. (a) How can the low pass filter design procedure be used to design high pass, band pass and band stop filters?
 - (b) Design a two section air filled coaxial line binomial transformer to match the original line of characteristic impedance 50 Ω to a 100 Ω load. What bandwidth is obtained for $\Gamma_m = 0.1$ for matching at 10 GHz? 6+6=12

Group - D

- 6. (a) Explain the radiation mechanism of a rectangular microstrip patch antenna.
 - (b) A very thin half-wavelength slot is cut on an infinite, planar, very thin, perfectly conducting electric screen. Find its input impedance. (Assume it is radiating into free-space).

8 + 4 = 12

- 7. (a) Explain the concept of pattern multiplication in linear antenna array using suitable pictorial representation.
 - (b) Explain the concept of separable excitation associated with planar array with rectangular grid.
 - (c) A uniform linear array is operating at 6 GHz and required to produce an end fire beam. If the array consists of 10 identical elements with an inter-element spacing of 0.5 λ , find out the progressive phase and array length.

3 + 5 + 4 = 12

Group - E

- 8. (a) Derive the link budget equation for a microwave communication system.
 - (b) List a few common types of fading experienced in space wave communication. Provide a discussion on the causes of fading along with their possible mitigation techniques.

4 + 8 = 12

- 9. (a) Calculate the value of frequency at which electro magnetic wave must propagate through E region with index of 0.6 and electron density of 4.23×10^4 electron/m³.
 - (b) Prove that line of sight distance is given by d = 3.75 ($\sqrt{h_t} + \sqrt{h_r}$). 4 + 8 = 12

4