M.TECH/ECE/1ST SEM /ECEN 5102/2015 2015

Advanced DSP 13 (ECEN 5102)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group	$\mathbf{a} - \mathbf{A}^{(n)}$
(Multiple Choice Typ	e Questions)
1. Choose the correct alternatives for the followin	g: 10 x 1=10
(i) ROC of causal finite duration discrete time sign	gnal is
(a) the entire z plane except z=0	(b) the entire z plane except z=α
(c) the entire z plane	(d) a ring in z plane.
(ii) The digital system y(n)=x(n²) is	
(a) finear and causal	(b) linear and non causal
(c) non linear and causal	(d) non linear and non causal.
(iii) If an N point sequence is N=16 the multiplication using Radix - 2FFT are	total number of complex addition and
(a) 64 and 80	(b) 80 and 64
(c) 64 and 32	(d) 24 and 12.
(iv) Convolution is used to find	
(a) impulse response of LTI system	(b) frequency response of LTI system
(c) time response of LTI system	(d) phase response of LTI system.
(v) Interpolation is a process to	
(a) reduce abasing	(b) decrease sampling rate
(c) increase sampling rate	(d) has no effect.
(vi) Linear Phase realization structure is used to	represent
(a) FIR system	(b) IIR system
(c) both FIR and IIR system	(d) all discrete time system.
(vii) If z-transformation of a sequence x(n) is sequence up sample by factor L	X(z) then what is the z transformation of a
(a) $X(z^{1/L})$ (b) $X(z^{L})$	(c) X(z ^{2L}) (d) None of these.
(viii) IIR filters	
(a) use feedback	(b) are sometime called recursive filter
(c) can oscillate if not properly designed	(d) all of above.
CEN 5102	

M.TECH/ECE/1ST SEM /ECEN 5102/2015

- (ix) FIR filter is
 - (a) recursive and linear
 - (c) non recursive and linear
- (b) recursive and non linear
- (d) none of these.

- (x) $\delta(n-k) *x(n-k)$ is equal to
 - (a) x(k)
- (b) x(n-k)
- (c) x(n-2k)
- (d) $\delta(n-k)$.

Group - B

- 2.(a) Write down the property of Convolution.
 - (b) What are the applications of wavelet transformation?
 - (c) If a system has impulse response $h(n) = e^{2n}u(n-1)$, determine whether the system is stable and causal.
 - (d) Obtain the convolution of following signal: X(n) = u(n) and $h(n) = 2^n u(n-3)$

2+2+4+4=12

- 3.(a) Prove the Convolution property DTFT $x_1(n)*x_2(n)=X_1(e^{jW})*X_2(e^{jW})$.
 - (b) Find Fourier transform of the signal $x(n)=(1/2)^{n-1}u(n-1)$
 - (c) Impulse response of the system $h(n)=1/2\delta(n)+1/2\delta(n-2)$, find the frequency response $H(\omega)$ of the system.
 - (d) State the Weiner-Khintechine theorem.

3+3+4+2=12

Group - C

- 4. A linear time invariant system is described by the following difference equation: Y(n)=ay(n-1) + bx(n) where 0<a<1
 - (i) Determine the impulse response h(n)of the system.
 - (ii) Determine the frequency response H(w)of the system
 - (iii) Choose the parameter b so that the maximum value of H(w)is unity.
 - (iv) Determine the output of the system to the input signal $x(n) = 12 \sin \frac{\pi}{2}$.

(3+3+3+3)=12

- 5.(a) State invertibility of linear time invariant system.
 - (b) Determine the inverse of the system with impulse response $h(n)=\delta(n)-\delta(n-1)$.

ECEN 5102

M.TECH/ECE/1ST SEM /ECEN 5102/2015

- (c) What is the input signal x(n) that will generate the output sequence $y(n) = \{1,5,10,11,8,4,1\}$ for a system with impulse response $h(n) = \{1,2,1\}$?
- (d) What do you mean by Homomorphic deconvolution?

2 + 3 + 5 + 2 = 12

Group - D

- 6.(a) What are the advantage and disadvantage of FIR filter over IIR filter?
 - (b) Design a low pass FIR filter with 11 coefficients for the following specification.

Pass band frequency edge = 0.25 kHz
Sampling frequency = 1 kHz
Use Hamming window technique.

4 + 8 = 12

- 7.(a) What do you mean by Gibbs phenomenon?
- (b) Using frequency sampling method design a band pass filter with the following specifications: sampling frequency F= 8000Hz, cut off frequency fc1= 1000Hz,fc2 = 3000Hz. Also determine the filter coefficient for N=7.

4 + (5 + 3) = 12

Group - E

- 8.(a) Explain sampling rate conversion by a rational factor I/D.
 - (b) How can you design a filter for implementation of sampling rate conversion?

6 + 6 = 12

- 9.(a) Write down the least mean square algorithm of adaptation filter and confirm that it is O(M) algorithm.
 - (b) Compare the LMS algorithm with the steepest descent algorithm.

6 + 6 = 12