M.TECH/VLSI/1ST SEM/VLSI 5101/2018

DIGITAL VLSI IC DESIGN (VLSI 5101)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:					$10 \times 1 = 10$	
	(i)) Value of "Lambda" in 0.5um Technology is (a) 0.25um (b) 0.5um (c) 1um			s n	(d) 0.125um.	
	(ii)	Pentium 4 chip (a) VLSI	belongs to belov (b) LSI	to below category SI (c) ULSI		(d) GSI.	
	(iii)	Most popular in (a) Gold	terconnect mate (b) Silver	erial is (c) Alu	minium	(d) Platinum.	
	(iv)	BDD is used in (a) High Level Synthesis (c) Floorplan			(b) Logic Synthesis (d) Routing.		
	(v)	Minimum Numb (a) 10	oer of Transistor (b) 12	rs in CMOS (c) 14	S logic Y =	AB + CD + EF is (d) 8.	
	(vi)	 (vi) For a Standard Cell Layout (a) Width is fixed (c) Both Height and Width are fixed (vii) KL Algorithm is related to (a) Routing (c) Logic Synthesis (viii) Memory Design is normally done using be (a) Full Custom (c) Std Cell based Semi Custom 			(b) Height is fixed (d) None of Above.		
	(vii)				(b) Partitioning (d) High Level Synthesis.		
	(viii)				low Method (b) Gate Array (d) FPGA.		

1

M.TECH/VLSI/1st SEM/VLSI 5101/2018

- (ix) Most Manual Effort is needed in below VLSI Methodology
 (a) FPGA
 (b) CPLD
 (c) Std Cell Based Semi Custom
 (d) Full Custom.
- (x) Stick Diagram Represents

 (a) Logic
 (b) Circuit
 (c) Layout
 (d) Architecture.

Group - B

- 2. (a) What are various Capacitance Components of a MOS Transistor?
 - (b) Draw VTC (Voltage Transfer Curve) of CMOS Inverter.
 - (c) How VTC of CMOS inverter will change if Width of PMOS is increased?
 - (d) For a CMOS Inverter $V_{OH} = 5V$, $V_{OL} = 0V$, $V_{IH} = 3.5V$, $V_{IL} = 2V$. What is the Value of NM_H and NM_L?

4 + 3 + 3 + 2 = 12

- 3. (a) What is the difference between "Micron based Design Rule" and "Lambda Based Design Rule" ?
 - (b) Draw Layout of CMOS inverter using Standard Cell Layout Topology and show all the layers.
 - (c) Draw schematic of CMOS gate which represents function f = (AB+C)! (! Means Bar).
 - (d) Draw Stick Diagram of the same CMOS gate.

2 + 2 + 3 + 5 = 12

4 + 3 + 5 = 12

Group - C

- 4. (a) What are differences between Full Custom Design and Std Cell based Semi Custom Design ?
 - (b) Explain Euler Path solution of a CMOS gate which represents function f = (AB+C+D)! (! Means Bar).
 - (c) Draw Y Chart for VLSI Design.

- 5. (a) Solve Euler Path Algorithm for the function f = CD(A + B)! (! Means Bar).
 - (b) Draw Stick Diagram accordingly.

VLSI 5101

2

M.TECH/VLSI/1st SEM/VLSI 5101/2018

(c) Draw Flow Diagram of Front End Design Flow.

4 + 4 + 4 = 12

Group - D

- 6. (a) Write VHDL code of Behavioural Modelling of a D Flip Flop gate.
 - (b) Draw Flow Diagram of High Level Synthesis.
 - (c) Explain ASAP and ALAP Scheduling Algorithm

3 + 4 + 5 = 12

- 7. Write short notes on below topic
 - i. FPGA.
 - ii. Finite State Machine.
 - iii. Technology Library Mapping for Logic Synthesis.

 $(3 \times 4) = 12$

Group - E

- 8. (a) Create ROBDD Diagram and corresponding optimized Boolean expression.
 - (b) For below Channel Routing Problem, draw Horizontal Constraint Graph (HCG) and Vertical Constraint Graph (VCG) Terminal Connection is as follows: 11122563040 ----- Upper Boundary 25055330604 ----- Lower Boundary 0 means no Connection. Assume HV Layer (V = Metal 1, H = Metal 2).
 - (c) Provide Optimum Channel Routing Solution for above case using Left Edge Algorithm.

2 + 5 + 5 = 12

- 9. (a) Draw Flow Diagram of Physical Layout Automation.
 - (b) For Floor-planning problem, what are inputs, outputs and Objective (Cost) function ?
 - (c) Explain Lee Algorithm of Maze Routing.

4 + 4 + 4 = 12

VLSI 5101

3