M.TECH/CSE/1ST SEM/CSEN 5131/2018

- 5. (a) Define density-based connectedness.
 - (b) Apply DBSCAN on the following set of data points, to determine the clusters. Show all steps in detail, assuming *eps* = 1 and *minPts* = 2. Data Points: (3,0), (3,1), (3,2), (4,1), (4,2), (10,11), (10,10), (20,21), (20,22), (21,21), (21,22).

3 + 9 = 12

Group - D

- 6. (a) Write short notes on the followings:i. Growth functionii. Break point.
 - (b) Calculate growth function and break point for the set of N points for the following functions.
 i. Positive intervals
 ii. Convex sets.
 4 + (4 + 4) = 12
- 7. (a) How hypotheses and growth functions are related?
 - (b) Find the growth function for positive ray based classification.
 - (c) Derive the formula for multivariate linear regression.

4 + 4 + 4 = 12

Group - E

8. Construct the primal problem and then derive the Lagrangian and its dual for the optimization problem as defined by linear SVM – classification.

12

12

- 9. (a) Write Mercer's condition in selecting Kernel function for nonlinear SVM.
 - (b) Write short notes on any three of the followings:
 - i. Information measure
 - ii. Overfitting
 - iii. VC Dimension
 - iv. Error vs Noise
 - v. Bias-Variance tradeoff .

M.TECH/CSE/1st SEM/CSEN 5131/2018

MACHINE LEARNING (CSEN 5131)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

(i) Consider the following data set, where A and B are input.

(1)	Consider	the follow	ing da	ta set,	wher	e A a	na B are input.
		А	0	0	1	1	
		В	0	1	0	1	
		output	-1	+1	+1	-1	
	Minimum	training e	error c	an be	achie	ved b	у
	(a) Single	Layer Per	ceptro	on	(b)) SVM	I (Quadratic Kernel)
	(c) Both (a	a) and (b)			(d)) Neit	ther (a) nor (b).
(ii)	(ii) Which of the following is a predictive model?						
	(a) Cluste	ring			(b)) Reg	ression
	(c) Summ	arization			(d)) Asse	ociation Rule.
(iii)	Consider the following two statements:						
	(x) "Noise						
	(y) "Outlie	"Outliers are always noise objects".					
	(a) Both a	re true			(b)) (x) i	s true and (y) is false
	(c) (x) is f	alse and (y) is tr	ue	(d)) Botl	h are false.
(iv)	Clustering can be categorised as a problem of						
Ċ	(a) superv		0		-		upervised learning
			-				e of these.
(v)	v) Gradient descent approach has the problem of stuck in					m of stuck into	
	(a) global	-			-		nite oscillation
	(c) local m				(d) eith	er (b) or (c).
	-						

M.TECH/CSE/1st SEM/CSEN 5131/2018

M.TECH/CSE/1st SEM/CSEN 5131/2018

(vi) Back propagation is a learning technique that adjusts weights in the neural network by propagating weight changes

(a) Forward from source to sink

- (b) Backward from sink to source
- (c) Forward from source to hidden nodes
- (d) Backward from sink to hidden nodes.
- (vii) Multi Layer Perceptron can be used as

 (a) a classifier
 (b) an estimator
 (c) None of (a) and (b)
 (d) both (a) and (b).
- (viii) Multi layered perceptron model is used to classify
 (a) linearly separable classes of data
 (b) non-linearly separable classes of data
 (c) both (a) and (b)
 (d) none of these.
- (ix) Generalization error is known as
 (a) in sample error
 (b) training error
 (c) out of sample error
 (d) none of these.
- (x) In non-linear SVM, the kernel function $K(x_i, x_j)$ has to satisfy the followings: (a) $K(x_i, x_j)$ is positive semi definite (b) $K(x_i, x_j)$ is symmetric (c) Both (a) and (b) (d) none of the above.

Group - B

- 2. (a) Discuss the back propagation learning algorithm for a single layer artificial neural network using an appropriate example.
 - (b) How does stochastic gradient descent differ from standard gradient descent?
 - (c) "Gradient descent technique always ensures global optima"—Argue in favour or against this statement.

6 + 3 + 3 = 12

- 3. (a) Explain the working principle of Naïve Bayes classification technique.
 - (b) Find the Class(X) using Naïve Bayes on the following dataset, where X= (Age<30; Income=High ; Student=No ; Credit Rating= Excellent). Assume there are two classes as follows: one class has bought a laptop and the other did not buy any laptop.

DATASET

Age	Income	Student	Credit_Rating	Buy_Laptop
<30	High	No	Fair	No
<30	High	No	Fair	No
<30	Medium	No	Fair	No
<30	Medium	Yes	Excellent	No
<30	Low	Yes	Excellent	Yes
>40	Medium	No	Fair	Yes
>40	Low	Yes	Fair	Yes
>40	Low	Yes	Excellent	No
>40	Medium	Yes	Fair	Yes
>40	Medium	No	Excellent	No
>30 and <40	High	No	Fair	Yes
>30 and <40	Medium	Yes	Excellent	Yes
>30 and <40	Medium	No	Excellent	Yes
>30 and <40	Low	Yes	Fair	Yes
				4 + 8 = 12

Group - C

- 4. (a) Describe the K-means algorithm.
 - (b) Perform K-means clustering on all the points in the following table, where K=2. Randomly select the initial seeds and perform the algorithm for two iterations.

Points	X co-ordinate	Y co-ordinate	
p1	1	9	
p2	2	10	
р3	7	4	
p4	10	3	
p5	5	6	
р6	6	11	
p7	3	4	
p8	4	9	
р9	8	1	
p10	3	12	
p11	7	6	
p12	11	2	

3 + 9 = 12