M.TECH/BT/3RD SEM/BIOT 6152/2018

7. Derive the equation to determine the volume of a mixing tank in activated sludge process in terms of solid retention time, considering endogenous metabolism.

12

Group E

- 8. Use the R-K method of order 4 to solve the solve the following equation with a step size of h=1, for 1<t<3, $\frac{dx}{dt}$ = 1+ $\frac{x}{t}$ with initial condition x(1)=1 12
- 9. Streptomycin is extracted from the fermentation broth using an organic solvent in a counter-current staged extraction unit. The distribution coefficient of streptomycin at pH=4 is k=40 and the flow rate of the aqueous phase is H=150 l/min. Only 5 extraction units are available to reduce the streptomycin concentration from 10 gms/l in the aqueous phase to 0.2 1 gms/l. Determine the required flow rate of the organic phase (L) in the extraction unit if extraction factor (E) is greater than 1 by using the Newton-Raphson method.

12

M.TECH/BT/3RD SEM/BIOT 6152/2018

MODELING AND SIMULATION IN BIOPROCESS (BIOT 6152)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: 10 × 1 = 10
 (i) Individuality of cells are the basic assumption of a
 - Individuality of cells are the basic assumption of a(a) structured model(b) segregated model(c) non-segregated model(d) unstructured model.
 - (ii) Two compartment model is
 (a) a type of structured model
 (b) where G component corresponds to cellular enzymes
 (c) overtly simplistic
 (d) all the above.
 - (iii) Michaelis-Menten is
 (a) a deterministic model
 (b) a probabilistic model
 (c) an empirical model
 (d) none of the above.
 - (iv) Which of the following is used to grow bacterial cultures continuously?
 - (a) Haemostat
 - (b) Chemostat
 - (c) Bacteria cannot be grown in continuous culture

(d) Thermostat

- (v) The modified Euler's formula is the same as
 (a) Runge-Kutta formula of the first order
 (b) Runge Kutta formula of the second order with
 - (b) Runge-Kutta formula of the second order with b=1
 - (c) Runge-Kutta formula of the second order with $b = \frac{1}{2}$

(d) none of the above.

4

M.TECH/BT/3RD SEM/BIOT 6152/2018

- (vi) What do you mean by "quasi steady state"?
 - (a) Cell concentration remains virtually constant
 - (b) Cell concentration is virtually variable
 - (c) Total biomass remains constant with time
 - (d) Total biomass decreases with time.
- (vii) In a fixed-volume fed batch culture μ declines when_____.
 (a) biomass increases
 (b) biomass decreases
 - (c) biomass remains constant (d) biomass is equal to zero.
- (viii) In solving algebraic and transcendental equations by iterative methods, if I is interval in which the root α of the equation $x=\varphi(x)$ lies, then the criterion for convergence is (a) $|\varphi'(x)|=0$ (b) $|\varphi'(x)|<1$

$(u) \psi(x) ^{-0}$	
(c) $ \varphi'(x) > 1$	(d) φ'(x) >0.

(ix) Under continuous culture which of the following condition is applicable?
 (a) umax < D
 (b) umax >D

(a) $\mu_{max} < D$	(b) μ _{max} >D
(c) $\mu_{max} = D$	(d) $\mu_{max}=0$.

(x) If one starts with 10,000 (10^4) cells in a culture that has a generation time of 2 h, how many cells will be in the culture after 4 and 48 h? (a) 4.0×10^4 cells, 1.7×10^{11} cells (b) 4.2×10^4 cells, 1.1×10^{11} cells (c) 4.6×10^4 cells, 1.5×10^{11} cells (d) 4.8×10^4 cells, 1.3×10^{11} cells.

Group - B

2. Establish a mechanistic model for action of an enzyme on a substrate in the cellular system with suitable premises.

12

3. Create a structured kinetic model for product formation in a bioprocess.

12

Group - C

M.TECH/BT/3RD SEM/BIOT 6152/2018

5. The number of viable spores of a new strain of *Bacillus subtilis* is measured as a function of time at various temperatures.

Time (min)	Number of spores (N) at:				
	T=85°C	T=90°C	T=110°C	T=120°C	
0	2.4×10 ⁹	2.4 ×10 ⁹	2.4×10 ⁹	2.4 ×10 ⁹	
0.5	2.39×10 ⁹	2.38×10 ⁹	1.08×10 ⁹	2.05×107	
1.0	2.37×10 ⁹	2.3×10 ⁹	4.8×10 ⁸	1.75×10 ⁵	
1.5	-	2.29×10 ⁹	2.2×10 ⁸	1.3×10 ³	
2	2.33×10 ⁹	2.21×10 ⁹	9.85×10 ⁷	-	
3	2.32×10 ⁹	2.17×10 ⁹	2.01×107	-	
4	2.28×10 ⁹	2.12×10 ⁹	4.41×10 ⁶	-	
6	2.2×10 ⁹	1.95×10 ⁹	1.62×10 ⁵	-	
8	2.19×10 ⁹	1.87×10^{9}	6.88×10 ³	-	
9	2.16×10 ⁹	1.79×10^{9}	-	-	

- i. Determine the activation energy for thermal death of *Bacillus subtilis* spores.
- ii. What is the specific death rate constant at 100° C?
- iii. Estimate the time required to kill 99% spores in a sample at 100°C using a deterministic model for sterilization.

12

Group - D

- 6. In a fed batch culture operating with intermittent addition of glucose solution, values of the following parameters are given at time t = 2 hr, when the system is at quasi-steady state.
 - V =1000 litre, F = 200 ml/hr, So= 100 gm glucose/litre, μ_m = 0.3 hr⁻¹.
 - Ks = 0.1 gm glucose/litre, Yx/s= 0.5 gdw cells/ g glucose, Xo^t=30 gm.
 - i. Find the initial volume of culture
 - ii. Determine the concentration of growth limiting substrate in the vessel at quasi steady-state.
 - iii. Determine the concentration and total amount of biomass in the vessel at t=2 hr. (at quasi steady state).
 - iv. If q_p = 0.2 gm product /gm cell, Po= 0, determine the concentration of product in the vessel at t= 2 hr.

3 + 3 + 3 + 3 = 12

3