B.TECH/AEIE/CE/ ECE/ EE /3RD SEM/ MATH 2001/2018 MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs					Full Marks : 70	
Figures out of the right margin indicate full marks.						
Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.						
Candidates are required to give answer in their own words as far as practicable.						
Group – A (Multiple Choice Type Questions)						
1.	Choos	Choose the correct alternative for the following:			10 × 1 = 10	
	(i)	If $f(z) = C_0$ (a) 2 C ₁	+ $C_1 z$, then $\frac{1+f(z)}{z} d$ (b) 2 $(1 + C_0)$	z over unit circle is giv (c) 2 iC ₁	ven by (d) 2 i(1 + C ₀).	
	(ii)	(ii) For the function $f(z) = \frac{\sin z}{z}$, $z = 0$ is				
		(a) an essential singularity (c) a pole of order 2		(b) a simple po (d) a removabl	(b) a simple pole (d) a removable singularity.	
	(iii)	If a function $f(x) = x^2$, $-x$ is represented by a Fourier ser $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then the value of b_n is			by a Fourier series s	
		(a) $\frac{2\pi^2}{3}$	(b) $\frac{4(-1)^n}{3}$	(c) 0	(d) 1.	
	(iv)	The value of $\int_{-1}^{1} {\{P_n(x)\}}^2 dx$ is				
		(a) 1	(b) $\frac{2}{2n+1}$	(c) 2n ²	(d) 0.	
	(v)	$J_{\frac{1}{2}}^{2}(x) + J_{-\frac{1}{2}}^{2}(x)$	x)=			
		(a)10	(b) 0	(c) $\frac{2}{\pi X}$	(d) $\frac{2}{\pi x}$ sin2x	
	(vi) If $\mathcal{F}{f(t)} \approx F(s)$ and $a \neq 0$, then $\mathcal{F}{f(at)} =$					
		(a) $\frac{1}{a} F(\frac{s}{a})$	(b) $\frac{1}{a}F(\frac{a}{s})$	(c) $\frac{1}{ a } F(\frac{a}{s})$	(d) $\frac{1}{ a } F(\frac{s}{a})$.	

B.TECH/AEIE/CE/ ECE/ EE /3RD SEM/ MATH 2001/2018

(vii) The value of $P_1(x)$ is

(a) 1 (b) x (c) 0 (d)
$$\frac{4}{7}$$
.
(viii) $\frac{d}{dx}J_0(x) =$
(a) $-J_1(x)$ (b) $J_1(x)$ (c) 0 (d) $\frac{2}{x} - J_1(x)$

(ix) If F(s) denotes the Fourier transform of f(t), then the Fourier transform of tf (t) is

(a)
$$\frac{d}{ds} \{F(s)\}$$

(b) $i \frac{d}{ds} \{F(s)\}$
(c) $-i \frac{d}{ds} \{F(s)\}$
(d) None of (a), (b), (c).

(x) Particular integral of the PDE
$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 2x + 3y$$
 is
(a) $\frac{1}{150} (2x + 3y)^3$ (b) $\frac{1}{75} (2x + 3y)^3$
(c) $\frac{1}{150} (2x + 3y)^2$ (d) $\frac{1}{75} (2x + 3y)^2$

Group - B

- 2. (a) Find the analytic function f(z) = u + iv in terms of z, given $2u + v = e^{x}(\cos y - \sin y).$
 - (b) (i) Show that an analytic function with constant modulus is constant. (ii) Express $f(z) = \cos(z)$ in u(x, y) + iv(x, y) form where z=x + iy.

6 + (4 + 2) = 12 3. (a) Expand the function $f(z) = \frac{1}{(z-1)(z-2)}$ in Laurent series in the region |z| < 1. (b) Find the pole of the function $f(z) = \frac{e^{iz}}{z^2 + 1}$ and the residues at each pole. 6 + 6 = 12

- 4. (a) Find the half-range sine series of $f(x) = x \cos x$ in $0 < x < \pi$
- (b) Obtain Fourier series for the function $f(x) = \begin{cases} \tau x, & 0 \le x \le 1 \\ \tau (2 - x), & 1 \le x \le 2 \end{cases}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.

6 + 6 = 12

B.TECH/AEIE/CE/ ECE/ EE /3RD SEM/ MATH 2001/2018

5.(a) Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$. Hence deduce Fourier sine transform of $g(x) = \frac{x}{1+x^2}$. (b) Find the inverse Fourier transform of $\frac{1}{1+x^2}$.

(b) Find the inverse Fourier transform of $\frac{1}{s^2+6s+25}$

7 + 5 = 12

Group – D

6. (a) Obtain the power series solution of xy'' + 2y' - xy = 0 about x = 0.

(b) Show that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

7. (a) Prove that $\int_{-1}^{1} P_m(x)P_n(x)dx = 0, \text{ for } m \neq n.$ (b) Prove that $\frac{d}{dx}\{x^{-n}J_n(x)\} = -x^{-n}J_{n+1}(x).$

6 + 6 = 12

8 + 4 = 12

Group – E

- 8. (a) Solve: $z(x + y)p + z(x - y)q = x^{2} + y^{2}$
 - (b) Solve the given partial differential equation using method of separation of variables : $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ given that $u(0, y) = 8e^{-3y}$. 6 + 6 = 12
- 9. (a) Find the complete integral of $pxy + pq + qy \approx yz$ by using Charpit's method.
 - (b) Find the general solution of the following partial differential equation $(D^2 + DD' 6D'^2)z = y \cos x$

6+6=12

2

3