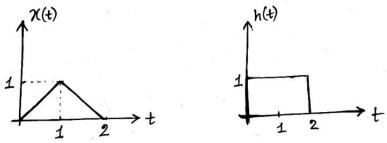
B.TECH/EE/5TH SEM/ELEC 3103/2018

- (vi) The values of $\omega_{\mathbb{R}}$ (natural frequency) and ξ (damping factor) for the second order system $G(s) = \frac{1}{0.25s^2 + s + 1}$ are
 - (a) 2.5 and 1.0 (b) 1.0 and 0.5 (c) 2.0 and 1.5 (d) 2.0 and 1.0.
- (vii) For the causal discrete-time signal with Z transform $X(z) = \frac{z^2(2z-1.5)}{(z-1)(z-0.5)^2}$ the initial (x(0)) and the final values ($x(\infty)$) are (a) x(0) = 2 & $x(\infty) = -2$ (b) x(0) = -2 & $x(\infty) = 2$ (c) x(0) = 2 & $x(\infty) = 2$ (d) x(0) = -2 & $x(\infty) = -2$
- (viii) For the current-force analogy in an electrical and mechanical (translation) systems, the reciprocal of inductance (in an electrical system) is analogous to the element
 (a) Viscous-friction coefficient
 (b) Velocity
 (c) Spring constant
 (d) Mass.
- (ix) The equivalent difference equation of the continuous time system $\dot{x}(t) = -0.25x(t) + 1$ with sampling time $T = \frac{\pi}{4}$ sec. (τ is the time constant of the above system) is (a) x(k) = -0.25x(k-1) + 1 (b) x(k) = 0.75x(k-1) + 1(c) x(k) = -1.25x(k-1) + 2 (d) x(k) = -0.75x(k-1) + 1.
- (x) The state space model of a 2nd-order system is described as $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \text{ the corresponding roots of the characteristic equation are} \\
 (a) -3 \pm 3j \qquad (b) 3 \pm 3j \qquad (c) -3, 3 \qquad (d) -6, 0.$

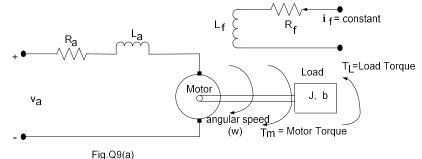
Group – B

- 2. (a) Find whether a unit ramp signal r(t) is an energy signal or a power signal.
 - (b) Sketch the signal f(t) = r(t+3) r(t+2) r(t-2) + r(t-3).
 - (c) Find the convolution of the signals x(t) and h(t). Use graphical convolution method.



B.TECH/EE/5TH SEM/ELEC 3103/2018

9. (a) Find the transfer function relating $V_a(s)$ to $\omega(s)$ of an electromechanical system as shown in Fig. Q 9(a) (assumptions: (i) armature reaction has been neglected (ii) frictional torque linearly related to velocity (iii) shaft torsional stiffness and motor inertia are neglected).



(b) Find the value of the state-vector $[x_1(t=3) \ x_2(t=3)]^T$ at time t=3 second for state-space model with the following state transition $(\phi(t,0))$ matrices: $\phi(1,0) = \begin{bmatrix} 0.527 & 0.159 \\ -0.477 & -0.110 \end{bmatrix}$; $\phi(3,1) = \begin{bmatrix} 0.202 & 0.066 \\ -0.199 & -0.064 \end{bmatrix}$. Assume the input to the system is u(t) = 0 and initial value of the state vector $\begin{bmatrix} x_1 & (0) \\ x_2 & (0) \end{bmatrix} = \begin{bmatrix} 10 \\ -10 \end{bmatrix}$. 8 + 4 = 12

ELEC 3103

2

5

B.TECH/EE/5TH SEM/ELEC 3103/2018

SIGNALS & SYSTEMS (ELEC 3103)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

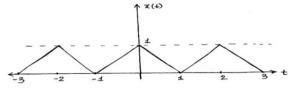
1. Choose the correct alternative for the following: (i) The normalized energy and the power of the signal $x(t) = e^{-\alpha} u(t)$ with u(t) = unit step function and $\alpha = 0$ are, (a) $E_x = \frac{1}{2}, P_x = 0$ (b) $E_x = 0, P_x = \frac{1}{2}$ (c) $E_x \to \infty, P_x = \frac{1}{2}$ (d) $E_x = \frac{1}{2}, P_x \to \infty$ (ii) The odd component of the signal x(t) = u(t) - u(t-1) with u(t) = unit step function is (a) $x_o(t) = \begin{cases} 1 & for & -1 \le t \le 2\\ 0 & ; & elsewhere \end{cases}$ (b) $x_o(t) = \begin{cases} 0.5 & for & -1 \le t \le 1\\ 0 & ; & elsewhere \end{cases}$

(c) $x_o(t) = \begin{cases} 0.5 & \text{for } 0 \le t \le 1 \\ -0.5 & \text{; elsewhere} \end{cases}$ (d) $x_o(t) = \begin{cases} 0.5 & \text{for } 0 \le t \le 1 \\ -0.50 & \text{; } -1 \le t \le 0 \end{cases}$

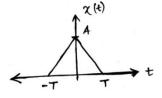
- (iii) In Fourier series analysis of a periodic odd signal x(t,) there exist only "all odd-ordered harmonics with sine- components' when the given signal x(t) having a characteristic as
 (a) Even-half periodic symmetry
 (b) Even-periodic
 (c) Odd-half periodic symmetry
 (d) Odd- periodic.
- (iv) The R.O.C of z transform for the discrete signal x(n) = 3ⁿu(n)
 (causal signal) is
 (a) R.O.C : Complete z complex plane
 (b) R.O.C : |z| > 3
 (c) R.O.C : Outside the unit circle of z plane
 (d) R.O.C : |z| < 3
- (v) The impulse response of a causal linear continuous time system is denoted by h(t), the system is bounded-input-bounded-output stable if the impulse response function h(t) is
 - (a) absolutely square integrable(b) absolutely integrable(c) square integrable(d) integrable.

1

- (d) Find out sequence of the signal x(2n-1) if $x(n) = \{3,6, , \hat{1}, 0,5\}$. 3 + 2 + 6 + 1 = 12
- 3. (a) Find the trigonometric Fourier series of the signal shown below. And hence find out the exponential Fourier series coefficient.



(b) Find the Fourier Transform of the following signal *x*(*t*) and also sketch its amplitude and phase spectrum.



6 + 6 = 12

Group – C

- 4. (a) State and explain Shannon's sampling theorem with a suitable example. Obtain the discrete version of continuous time PID controller using backward difference approximations.
 - (b) Find the z transform of a non-causal signal $x(n) = 2^n u(n) + 3^n u(-n)$ and its R.O.C. 7 + 5 = 12
- 5. (a) (i) For the given z trasform pair $x(n) \leftrightarrow X(z)$ (for one-sided z transform) and positive integer 'n', show that z transform of $(nx(n)) = -z \frac{dX(z)}{dz}$.

(ii) Determine the z - transform of $x(n) = n a^n u(n)$; where n' is positive integer.

(b) Determine the response of the discrete-time system (given below): y(n) = x(n) + 0.5x(n-1) - 0.6y(n-1) - 0.08y(n-2) for a unit step input i.e. x(n) = u(n) with zero initial conditions; using z - transform method.

$$(4+2)+6=12$$

Group – D

- 6. (a) A single-input, single-output LTI system is input-output stable if, and only if, its transfer function has all its poles in the open left-half of the complex plane.
 - (b) Find the impulse response of the system H(s) = 10/(s+2)(s+4) and hence determine whether the corresponding system is (i) causal (ii) stable based on the impulse response.

6 + 6 = 12

- 7. (a) A normalized (standard) second-order under-damped system $G(s) = \frac{\omega^2 n}{(s^2 + 2\xi\omega_n s + \omega^2 n)}$ is excited with a unit step input (assume zero initial conditions). Derive the expression for the output response and plot output response i.e.(y(t)) –vs- time (t)). Show that the logarithm ratio of two successive overshoots (1st. and 2nd-overshoots) *a* and *b* can be expressed as $\frac{2\pi\xi}{\sqrt{1-\xi^2}}$.
 - (b) The response of a normalized second-order system to a unit step was found to be oscillatory with zero initial conditions. The only measurements recorded were two successive overshoots (1st. and 2nd. overshoots), *a* and *b* equal to 0.4 and 0.08 respectively, and the period of oscillation $T_d = 0.4 \ sec$. Determine the values of the natural frequency (ω_n) and the damping ration (ξ).

8 + 4 = 12

Group – E

- 8. (a) Define the following terms: State, State vector and State space of a dynamical system.
 - (b) Convert the state-space model given below: $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \text{ (state eq.); } y(t) = \\
 \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \text{ (output eq.) to an equivalent transfer function model} \\
 G(s) \text{ (assume initial conditions are zero) and hence compute natural frequency } \omega_n \text{ and damping ration } \xi \text{ of the system. Is the given dynamic system is stable? - Justify your answer. Determine output response <math>y(t)$ of the system from transfer function model.

5 + 7 = 12