B.TECH/CSE/7TH SEM/CSEN 4144/2018 DATA MINING AND KNOWLEDGE DISCOVERY (CSEN 4144)

Time Allotted : 3 hrs

Full Marks : 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) Data Mining is
 - (a) the actual discovery phase of a knowledge discovery process
 - (b) the stage of selecting the right data for a KDD process
 - (c) a subject-oriented integrated time variant non-volatile collection of data in support of management
 - (d) none of the above.
 - (ii) Assuming log base 2, the entropy of a binary feature with p(x = 1) = 0.75 is (a) 0.1875 (b) 0.8113 (c) 0.1887 (d)2.41.
 - (iii) In a picture, where 7 cats and 10 dogs are present, your dog detection algorithm has detected 9 entities, out of which only 6 are dogs and remaining are cats. What is the precision of your algorithm?
 (a) 0.6 (b) 0.66 (c) 6/17 (d) 0.9.
 - (iv) The goal in Naïve Bayes classifier is to predict class label using(a) posterior probability(b) prior probability
 - (c) likelihood (d) evidence.
 - (v) K-means clustering suffers from
 - (a) bad initialization of centroids
 - (b) bad selection of K.
 - (c) selection of only round shaped clusters
 - (d) all of the above.
 - (vi) Boosting is said to be a good classifier because
 - (a) it creates all ensemble members in parallel, so their diversity can be boosted
 - (b) it attempts to minimize the margin distribution
 - (c) it attempts to maximize the margins on the training data
 - (d) none of the above.

B.TECH/CSE/7TH SEM/CSEN 4144/2018

- (vii) Closed frequent itemsets category is a

 (a) superset of frequent itemsets
 (b) subset of maximal frequent itemsets
 (c) superset of maximal frequent itemsets
 (d) subset of infrequent itemsets.
- (viii) DBSCAN cannot be used (with high accuracy) for datasets that are
 (a) convex
 (b) uniform density
 (c) non-uniform density
 (d) none of the above.
- (ix) Suppose that X₁, ..., X_m are categorical input attributes and Y is categorical output attribute. Suppose we plan to make a decision tree learn without pruning, using the standard algorithm. The maximum depth of the decision tree must be

 (a) less than m+1
 (b) greater than m+1
 (c) either (a) or (b) can be true
 (d) none of (a) and (b) are true.
- $\begin{array}{ll} (x) & \mbox{ After SVM learning, each Lagrange multiplier α_i takes either zero or non-zero value. What does it indicate in each situation? \end{array}$
 - (a) A zero α_i indicates that the datapoint i has become a support vector datapoint, on the margin.
 - (b) A zero α_i indicates that the learning process has identified support for vector $i. \label{eq:alpha}$
 - (c) A non-zero α_i indicates the datapoint i is a support vector, meaning it touches the margin boundary.
 - (d) A non-zero α_i indicates that the learning has not yet converged to a global minimum.

Group – B

- 2. (a) Define Information gain and gain in the Gini index.
- (b) Consider the following data set for a binary class problem.

Sl No	A	В	Gender				
1	Т	F	C1				
2	Т	Т	C1				
3	Т	Т	C1				
4	Т	F	C2				
5	Т	Т	C1				
6	F	F	C2				
7	F	F	C2				
8	F	F	C2				
9	Т	Т	C2				
10	Т	F	C2				
· C							

- (i) Calculate the information gain when splitting on A and B. Which attribute would the decision tree induction algorithm choose?
- (ii) Calculate the gain in the Gini index when splitting on A and B. Which attribute would the decision tree induction algorithm choose?

2 + 10 = 12

B.TECH/CSE/7TH SEM/CSEN 4144/2018

B. TECH/ 3. (d)	UNA: ittlees trest ht			tfethhed	fothonkiithersce f	or the association rules
51(4)	{bi) data sejagi				-	
	(ii) Overfitting				-	
	(iii) Pre and po		ID Transact		Items Bought	
			000		$\{a, d, e\}$ $\{a, b, c, e\}$	
	(iv) Precision a	2	001		$\{a, b, d, e\}$	
		2	003		$\{a, c, d, e\}$	3 × 4 = 12
		3	001		$\{b, c, e\}$ $\{b, d, e\}$	
4. (a)	Define Bayes'		002		$\{c, d\}$	classification rule from
ii (u)	classification e	r 4	004		$\{a,b,c\}$	
(b)	Consider the fo	5	003		$\{a,d,e\}\ \{a,b,e\}$	e Naïve Bayes' classifier to
(5)		L			vast her = rainy	
	condition = rich					$3 \times 4 = 12$
	Weekend	Weather	Parents Yes	Finan	cial Condition	Decision
-	W1	Sunny			Rich	Cinema
3.	Consider the c					ormPhiefanchical clustering
		mysletter link				enera tenem acover. Try to
	approximately	plot them o		e and	show the nest	ed clusters. Also show the
	dendrogram wi	th merging c	listance on Y-a	axis.	Poor Poor	Cinema Cinema
	W0 W7	VPiolicits	X No-ordina	ate	YRooordinate	Cinema
	W8	Windy	No 1		Rich	Play Tennis
	W9	Windy	Yes 2		Rich	Cinema
	W10	Sunny	No 7		Rich 4	Play Tennis
	F	p3 p4	10		3	6+6=12
5.	Sometimes dat		linearly Separ	rable c	or data b as erro	rs and one wants to ignore
	them to obtain	a better sol	ution. In fact,	this is	achieved by re	laxing the margin, in other
	words, using a	soft margin.	4		, 9	- Thed by linear SVM – sof
			the optimiza	ation p	problem as def	fned by linear SVM – sof
	margin classific	catiom 0	3		12	
		p11	7		6	5 + 7=12
		p12	Group) – D	2	
5.	Prove that the	total num	ber of poss	ible r	ules extracted	d from a market baske
9.(a) F	ediatas di theanso	dtatas ideum	ni callethie mosin	its:in t	the following ta	ble, where K=2. Randomly
	elect the initial see					
5	Explain FP-gr					
	Explain FF-gi			iue IIy.	r co-orumate	
	_	p1	1		9	9 + 3 = 12
7.	Consider the n	p3	7		4	
(a)	Compute the	suppert for	itemsets ₅ {e},	{b, d},	, and {b, g, e} b	y tr eating each transaction
	ID as a marke	t başıkset.	7		2	
(b)	Use the result	ts i ^{h7} part	(a) to comp	ute t	he confidence 10 ymmetric meas	for the association rules
		P 7	0		1	
(c) (h) D						asket. Each item should be one transacti s n bough B
(3) D				n app	cars in at itast	one u ansacuon vougile by
	the customer,	and o otherv	vise.J			