
B.TECH/AEIE/CSE/ECE/IT/1st SEM/CHEM 1001/2018

- 7. (a) Draw the curve for the conductometric titration of a strong acid vs a weak base and explain the nature of the curve.
 - (b) Establish the relation between the cell EMF and the reaction enthalpy.
 - (c) The rate of a first order reaction is 0.04 mol. L⁻¹.s⁻¹ at 10 minutes and 0.03 mol.L⁻¹.s⁻¹ at 20 minutes. Find the half life period of the reaction.
 - (d) What type of a battery is lead storage cell? Write the anode and cathode reaction and overall reaction occurring in a lead storage battery during discharging and charging process.

3+2+3+(1+3)=12

Group - E

- 8. (a) Write down the Fischer projections of all the stereoisomers in tartaric acid and comment on their stereochemical relationship.
 - (b) Write the total number of rotational axes and the total number of σ planes present in H₂O molecule and show their locations.
 - (c) Predict the product with stereochemistry for the following reaction

(d) Briefly write down the synthetic route for Aspirin and paracetamol. 3 + 3 + 2 + 4 = 12

- 9. (a) How does the potential energy of n-butane molecule vary with torsion angle (rotation about C-2 and C-3 bond)? Explain the nature of the curve using the geometry of the conformational isomers.
 - (b) Identify the absolute configuration of the each stereocentre of the following compounds

- (c) Why propynoic acid (CH≡CCOOH) is stronger than propenoic acid (CH₂=CHCOOH)? Explain the fact.
- (d) Why do we need to classify drugs in different ways? What are sulfa drugs? 3+3+2+(3+1)=12

B.TECH/AEIE/CSE/ECE/IT/1ST SEM/CHEM 1001/2018

CHEMISTRY I (CHEM 1001)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) The efficiency of a Carnot cycle $(T_2 > T_1)$ is (a) $(T_2-T_1)/T_2$ (b) $(T_2-T_1)/T_1$ (c) 1 (d) $T_1/(T_2-T_1)$.
- (ii) Entropy of an ideal gas depends upon its
 (a) pressure only
 (c) both (a) & (b)
 (d) neither (a) nor (b).
- (iii) The dipole moment of gas phase HBr molecule is 0.827D. If the interatomic distance between H and Br is 1.41A°, the percentage ionic character of HBr will be
 (a) 12.21 (b) 16.83 (c) 76.81 (d) 25.26.
- (iv) The correct order of electron affinities of halogens is (a) F > Cl > Br > I (b) I > Br > Cl > F (c) Cl > F > Br > I (d) Cl > F > I > Br.
- (v) The hybridization of the central atom in XeF_2 molecule is (a) sp^2 (b) sp^3 (c) $sp^3d(d) sp^3d^2$.
- (vi) In infrared spectroscopy which frequency range is known as the fingerprint region?

 (a) 500-1500 cm⁻¹

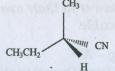
 (b) 1400-900cm⁻¹

 (a) 900-600 cm⁻¹

 (d) 600-250 cm⁻¹.
- (vii) The half-life of a first order reaction is 20 minutes. The time required for 75% completion of the reaction is
 (a) 30 minutes (b) 40 minutes

CHEM 1001

SET 老女宝女臣 4.5


TECH/AEIE/CSE/ECE/IT/1st SEM/CHEM 1001/2018

- (viii) The element of symmetry which is not present in CH₄ molecule is
 - (a) rotational axis of symmetry
 - (b) plane of symmetry
 - (c) centre of symmetry
 - (d) alternating axis of symmetry.
- (ix) Which one of the following carbanions is most stable
 - (a) H₃C⁻

(b) $H_2C = CH^-CH_2^-$

(c) (CH₃)₂CH⁻

- (d) (CH₃)₃C
- (x) What is the correct absolute configuration for the following compounds?

(a) R

HEM 1001

(c) Achiral

- (b) S
- (d) cannot be determined

Group - B

- (a) Derive the Gibbs-Duhem relations.
- (b) Calculate the wavelength of emitted light for the transition of energy level n=4 to energy level n=1 for the hydrogen electron transition. In which region of electromagnetic spectrum does this radiation fall? (h = $6.626 \times 10^{-34} \text{m}^2 \text{ kg/s}$; mass of the electron = $9.1 \times 10^{-31} \text{ kg}$)
- (c) What is the de Broglie hypothesis? Consider a beam of electron with a speed of 5×10^6 m/s and calculate the de Broglie wavelength.
- (d) Write the basic principle and the applications of UV-visible spectroscopy.
 - 3+3+3+3=12
- How does the wave function of a particle in a one dimensional box look like for n = 1 and n = 2 energy levels. Comment on the number of nodes for each of the level.
- (b) Calculate the change in entropy accompanying the isothermal expansion of 4 moles of an ideal gas at 300°K until its volume is increased three times.
- (c) What is shielding and deshielding in NMR spectroscopy? Give proper example(s).
- (d) What are activity and activity coefficient? What is the relation between chemical potential and activity?

3+3+3+3=12

B.TECH/AEIE/CSE/ECE/IT/1st SEM/CHEM 1001/2018

Group - C

- 4. (a) Using VSEPR theory, predict the shape and indicate the state of hybridization of central atom of the following chemical species: ICl₄, ClF₃.
 - (b) The first ionisation potentials of the coinage metals follow the order: Cu > Ag < Au explain.
 - (c) What do you mean by a buffer solution? Derive Henderson's equation to calculate pH of an acid buffer solution.
 - (d) Explain why the most common oxidation state for the heaviest element in Group 13, thallium (Tl), is +1 rather than +3.

$$(2+2)+3+(1+2)+2=12$$

- 5. (a) Draw the molecular orbital diagram of O_2 molecule and for the species O_2 , O_2^+ , O_2^- (superoxide) and O_2^{2-} (peroxide) calculate their bond orders, compare their relative stabilities and indicate their magnetic properties.
 - (b) Using Slater's rule, find out the effective nuclear charge of Na atom. Explain why the electronegativity value of Ga is higher than that of Al.
 - (c) Why phenolphthalein is not a suitable indicator for the titration of ammonium hydroxide with HCl? Explain with the help of a pH curve for titration.

$$5 + (2 + 2) + 3 = 12$$

Group - D

- 6. (a) Write the cell representation and calculate the equilibrium constant for the reaction, Fe³⁺ + 3I⁻ \rightarrow Fe²⁺ + I₃⁻. The E⁰ values for Fe³⁺/Fe²⁺ and I₃-/I⁻ are 0.77 V and 0.54 V, respectively.
 - (b) The half life of a second order reaction $2A \rightarrow P$ is 10 min and the initial concentration of the reactant is 0.2 mol/dm^3 . Calculate the rate constant of the reaction.
 - (c) Why are the Li⁺ ions less mobile in water than K⁺ ions although the ionic radius of Li⁺ less than K⁺?
 - (d) Calculate the standard free energy change for the following reaction at 25 °C, Au (s) + Ca^{2+} (1M) \rightarrow Au³⁺ (1M) + Ca (s)

The standard electrode potential values are $Ca^{2+}/Ca = -2.87V$, $Au^{3+}/Au = +1.50$ V. Predict whether the reaction will be spontaneous or not at 25° C.

4+3+2+3=12