B.TECH/CHE/7TH SEM/ECEN 4182/2018

7. For a unity feedback system the open loop transfer function is given by

 $G(s) = \frac{60}{(s+1)(s+2)(s+5)}$

(i) Draw the Nyquist plot.

(ii) Is the closed loop system stable?

(iii) What are phase and gain margins of the system?

4 + 4 + 4 = 12

Group - E

8. (a) A system is represented by the following state and output equation:

$$\dot{X} = \begin{bmatrix} -3 & -2 \\ -1 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$
$$Y = \begin{bmatrix} 1 & 2 \end{bmatrix} X$$

Find the poles of the system.

- (b) Find the transfer function of the system that is represented as $\dot{X} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} X + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u(t)$ $Y = \begin{bmatrix} 1 & 2 \end{bmatrix} X$
- (c) Define 'controllability' and 'observability' of a system.

4 + 4 + 4 = 12

9. Write short notes on any three: $(3 \times 4) = 12$

(i) PI and PD controller

(ii) Gain margin and Phase margin

(iii)Polar plot

(iv) Time domain specifications

(v) Eigenvalue.

B.TECH/CHE/7TH SEM/ECEN 4182/2018

CONTROL SYSTEMS (ECEN 4182)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

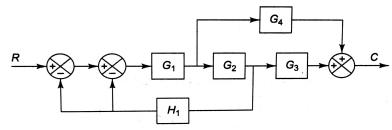
Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$ A system has $T(s) = \frac{100}{s^2 + 2s + 100}$; for unit step input the settling time (i) for 2% tolerance band is (b) 2.5 (a) 1.6 (c) 4 (d) 5. The open loop transfer function of a unity feedback system is (ii) $G(s) = \frac{1}{(s+2)^2}$. The poles of the closed loop system are at (a) -2, -2 (b) -2, -1 (c) -2, ±i (d) -2, 2. The viscous friction co-efficient, in force-voltage analogy, is analogous to (iii)
 - (a) charge
 (b) resistance
 (c) reciprocal of inductance
 (d) reciprocal of conductance.

 (iv) The entries in the first column of Routh array of a fourth order system
 - are 5, 2, 0.1, 2, 1. The number of poles in the right half s-plane are (a) 1 (b) 2 (c) 3 (d) 4.
 - (v) In case of type-1 system steady state acceleration error is
 (a) unity
 (b) infinity
 (c) zero
 (d) 10.
 - (vi)Relative stability can be evaluated using
(a) Bode plot only
(c) Both Bode plot and Nyquist plot(b) Nyquist plot only
(d) R-H criterion.

4

1


B.TECH/CHE/7TH SEM/ECEN 4182/2018

- (vii) A lag network for compensation normally consists of
 (a) R, L and C elements
 (b) R and L elements
 (c) R and C elements
 (d) R elements only.
- (viii) The initial slope of Bode plot for a type-1 system is
 (a) 20 db/decade
 (b) 40 db/decade
 (c) 40 db/decade
 (d) -20 db/decade.
- (ix) If a system has non-repeated roots of the characteristic equation on the imaginary axis and all other roots are on the left hand side of the s-plane, the system is

 (a) stable
 (b) unstable
 (c) marginally stable
 (d) cannot comment.
- (x) If the poles of a second order system lie in the second quadrant, the system is
 (a) undamped
 (b) underdamped
 (c) overdamped
 (d) critically damped.

Group – B

2. (a) Find out the overall transfer function of the system using block diagram reduction technique.



(b) Find out the overall transfer function using Mason's gain formula.

B.TECH/CHE/7th SEM/ECEN 4182/2018

- 3. (a) Show force voltage analogy by comparing an electrical RLC circuit and a mechanical translational system.
 - (b) Use Mason's gain formula to evaluate the overall transfer function of the following block diagram.

Group – C

- 4. (a) Using the Routh-Hurwitz stability criterion, determine the range of value of 'k' for the system to be stable if the OLTF of the unity feedback system is $G(s) = \frac{k(s+13)}{s(s+3)(s+7)}$
 - (b) A unity feedback system OLTF is given by $G(s) = \frac{10}{s^2 + 11s + 10}$. Find out the position, velocity and acceleration error for this system.
 - (c) A second-order system had closed loop transfer function $T(s) = \frac{144}{s^2 + 12s + 144}$. Find out the settling time for 2% tolerance. 6 + 3 + 3 = 12
- 5. The forward path transfer function of a unity feedback system is given by $G(s) = \frac{K}{s(s+4)(s+5)}$ Sketch the root locus as K varies from zero to infinity. 12

Group - D

6. Sketch the Bode plot for the system having open loop transfer function $G(s)H(s) = \frac{1000}{(1+0.1s)(1+0.001s)}.$

6 + 6 = 12

3

12