To Study Yeast Growth Kinetics in a Specially Designed External Loop Airlift Bioreactor

Tapan Kumar Ghosh¹, Debnath Bhattacharyya², and Tai-hoon Kim³

¹Heritage Institute of Technology
Kolkata -700107, India.
tapanswatighosh@gmail.com

²Hannam University,
Daejeon, South Korea.

³University of Tasmania, Australia
debnathb@gmail.com,taihoonn@empal.com

Abstract

Two types of airlift fermenters, conventional (UT-ALF) and modified (CDT-ALF) were investigated to evaluate their performance with respect to baker's yeast growth. The riser tube of conventional external loop airlift fermenter is replaced by a converging-diverging tube. The new reactor is called modified airlift reactor.

The results were compared for the two types of airlift fermenter (UT-ALF and CDT-ALF). Growth rates (dx/dt) were determined from experimental data for both the reactors under identical operating conditions and compared. CDT-ALF always shows higher growth rate compared to UT-ALF under any operating condition. Maximum growth was reported in CDT-ALF at 50 gm/l initial glucose conc. and 1.0 vvm air flow rate which was 20 % higher than UT-ALF. Yield (YX/S) was found to be 0.51which is theoretically very near to maximum achievable value.

Keywords: Yeast cell, Bioreactor, Growth rate, Airlift fermenter (ALF), Culture, Air flow rate.

Symbols:

ALF	Air-lift fermenter
CDT	Converging – diverging tube
UT	Uniform tube
KLa	Volumetric mass transfer coefficient (1/ hr.)
D.O	Dissolved oxygen
DNS	Dinitrosalicylic acid
OD	Optical density
vvm	Volume per volume per minute
dx/dt	Growth rate
dmax	Maximum dx/dt
tmax	Time to achieve dmax

1. Introduction

Oxygen supply is a critical factor for many aerobic fermentation processes [1]. Initial glucose concentration in batch culture is another crucial parameter which control cell mass