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Abstract
In this paper invex functions have been introduced in Hilbert space. Some important 

results regarding the characterization of such functions have been discussed. It has been 
proved that although being a generalization of the class of convex functions, this class of 
functions posses some properties which are not true in case of the class of convex functions 
in general. 
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1.  Introduction

The mathematics of Convex Optimization was discussed by several 
authors for about a century [2, 3, 4, 5, 9, 10, 15, 17, 23, 24]. In the second 
half of the last century, various generalizations of convex functions have 
been introduced [2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 16, 18, 19, 20, 22]. The invex 
(invariant convex), pseudoinvex and quasiinvex functions were introduced 
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2� S. CHATTERJEE AND R. N. MUKHERJEE

by M.A.Hanson in 1981 [14]. These functions are extremely significant in 
optimization theory mainly due to the properties regarding their global 
optima. For example, a differentiable function is invex iff every stationary 
point is a global minima[6]. Later in 1986, Craven defined the non-smooth 
invex functions [11]. For the last few decades, generalized monotonicity, 
duality and optimality conditions in invex optimization theory have been 
discussed by several authors but mainly in n[6,11,12,14,18,19,20]. The 
basic difficulty of genaralizing the theory in infinite dimensional spaces is 
that, unlike the case in finite dimension, closedness and boundedness of a 
set does not imply the compactness. However, in reflexive Banach spaces 
the problem can be alleviated by working with weak topologies and using 
the result that the closed unit ball is weakly sequentially compact. 

 In this paper, the concept of invex functions has been introduced in 
Hilbert space. Some important theorems regarding the characterization of 
such functions have been proved. It has been observed that the proposed 
class of invex functions posses some useful properties which do not hold 
for convex functions in general. 

2. Prerequisites

Definition 2.1: [4] A subset C of n  is convex if for every pair of points 
x1,x2 in C, the line segment

	 [ , ] = { : = , 0, 0, = 1}1 2 1 2x x x x x xα β α β α β+ ≥ ≥ + 	 (1)

belongs to C.

Definition 2.2: [21]The set C is said to be invex if there is a vector function 
η :C C n× →   such that, 

	 1 1 2 1 2( , )       ,  and [0,1]+ ∈ ∀ ∈ ∀ ∈x x x C x x Cλη λ 	 (2)

Definition 2.3: [4] Let C be an open convex set in n and let f be real 
valued and differentiable on C. Then f is convex if 

	 f x f y f y x y x y C( ) ( ) ( ),  ,    ,− ≥ 〈∇ − 〉 ∀ ∈ 	 (3)
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ON INVEX FUNCTIONS� 3

Definition 2.4: [20] The function f is said to be invex if there is a vector 
function η :C C n× →  such that, 

	 f x f y f y x y x y C( ) ( ) ( ), ( , )  ,    ,− ≥ 〈∇ 〉 ∀ ∈η 	 (4)

Definition 2.5: [8] Let X and Y be two normed vector spaces. A continuous 
linear transformation A : X → Y is said to be the Fréchét derivative(F-
derivative) of f : X → Y at x if for every e > 0, ∃ δ > 0 such that, 

	 ( ) ( )        with+ − − ≤ ∀ ≤Y X Xf x h f x Ah h h hε δ      	 (5)

When the derivative exists it is denoted by Df (x).
It is to be noted that,      f x th f x Ath th t h tY X X( ) ( ) =| |+ − − ≤ ∀ε ε ,  
with  th x≤ δ . Which implies that,

	
   

f x th f x
t

Ah hY X
( ) ( )+ −

− ≤ ε
 

 	
⇒

+ −
→t

f x th f x
t

Ah Df x h
0

( ) ( ) = = ( )lim

Proposition 2.1: [17]Let X be a vector space and Y be a normed space. Let 
S be a transformation mapping an open Set D ⊂ X into an open set E ⊂ Y 
and let P be a transformation mapping E into a normed space Z. Put T = 
PS and suppose S is F-differentiable at x ∈ D and P is F-differentiable at y 
= S(x) ∈ E. Then T is F- differentiable at x and DT(x) = DP(y) DS(x).

Remark: [4] It is to be noted that inn , Df(x) = ∇f(x). 

3.  Invex Sets and Invex Functions

 Let H be a real Hilbert space and K ⊂ H be a pointed closed convex 
cone, i.e., K ∩ - K = {θ}, with nonempty interior. Let us consider the 
following notations for x, y ∈ H: 

	  

\{ }
<

K

K

K

x y y x K
x y y x K
x y y x int K

θ
⇔ − ∈

⇔ − ∈
⇔ − ∈



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4� S. CHATTERJEE AND R. N. MUKHERJEE

Definition 3.1: A set S ⊂ H is said to be η- invex if there exist a vector 
function η: S x S → H such that 

	 x x y S x y H+ ∈ ∀ ∈λη( , ) ,   ,  
and for all λ ∈[0,1] 

 Let H1 and H2 be two real Hilbert spaces, K2 be a pointed closed 
convex cone in H2 and I ⊆ H1 is an open invex set. Further, suppose that,  
f : I → H2 be F-differentiable.

Definition 3.2: The function f is said to be η-invex if there exist a vector 
function η: I × I → H1 such that,	

	
Df y x y f x f y x y IK( ) ( , ) ( ) ( ),    ,

2
η ≤ − ∀ ∈

	
(6)

It is to be noted that Df(y) η (x,y) denotes the value obtained by 
operating F-differential of f at y ∈ I on η(x,y) ∈ H1. Henceforth, unless η 
needs to be specifically mentioned, we would simply say that, f is invex.

Remark: If H1 = n , H2 =   and η(x,y) = (x-y), Definition 3.2. coincides 
with the definition of a real valued convex function in n .

Example 3.1: Let us consider the function f: L2[0,1] → L2[0,1] defined as, 

 	 f(x(t)) = (x(t) - sinx(t)), x > 0, n ∈ 


 

 Clearly, f(x) is non-convex in nature. But it can be verified that f(x) is 
invex considering 

	

η π( ( ), ( )) =
4 ( ) ( )

2
( ) 1

 ( ) 2

0

x t y t
sin x t y t

cosx t
x t n

−

−
≠



if

otherwise






 	

(7)

4.  Characterization of Invex Functions

Theorem 4.1:  Let f : I → H2 be F-differentiable. Then f is invex iff every stationary 
point is a global minimizer.
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ON INVEX FUNCTIONS� 5

Proof: Let f  be invex and y is stationary point of f. Then Df(y) = 0. Therefore, 

	 θ ≤ K2   
f(x) - f(y), ∀ x ∈ I	 (8)

This implies that y is a global minimizer of f over I.
Conversely, let us assume that, every stationary point is a global 

minimizer. If y is a stationary point, then (6) is obvious. Let us assume 
that y is not a stationary point. By the definition of F-derivative, we have, 

	 Df y x y f y x y f y x y( ) ( , ) = ( ( , )) ( ) ( ( , ))η η ε η+ − − 	 (9)

 where,  

 

ε η
η
( ( , ))

( , )
0x y

x y
→  as  η( , ) 0x y →  Let η(x,y)) = x - y, then 

	

	
Df y x y f x f y x y f x f yK( ) ( , ) = ( ) ( ) ( ( , )) ( ) ( )

2
η ε η− − ≤ −

	
(10)

which implies that f is invex. 

Theorem 4.2: Let f : I → H2 and  g : I → H2 be F-differentiable invex functions 
such that either Df(y) = - λDg(y) for some λ > 0 and -λ[g(x) - g(y)] ≤K2 f(x) 
- f(y) or Df(y) ≠ - λDg(y) for any λ > 0. Then f and g are invex with respect to 
same η( , )⋅ ⋅ .

Proof: Let us prove the theorem by contradiction. Let f and g be invex with 
respect to the same η( , )⋅ ⋅ . Let us assume that there exist x, y ∈ I and λ > 0 
such that, 

	

Df y Dg y
f x f y g x g yK

( ) = ( )
( ( ) ( )) < ( ( ) ( ))

2

−
− − −

λ
λ

	
(11)

 Now, since f and g are invex with respect to the same η( , )⋅ ⋅  we have, 

	

Df y x y f x f y

Dg y x y g x g y
K

K

( ) ( , ) ( ) ( )

( ) ( , ) ( ) ( )
2

2

η

η

≤ −

≤ −
	

(12)

From (10)  and (11) we have,
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6� S. CHATTERJEE AND R. N. MUKHERJEE

	

θ λ η
η λ η

= ( ( ) ( )) ( , )
= ( ( ) ( , )) ( ( ) ( , ))

( (
2

Df y Dg y x y
Df y x y Dg y x y
f xK

+
+

≤ )) ( )) ( ( ) ( ))− + −f y g x g yλ
	

(13)

 Which contradicts the assumption (10). 
 It is to be mentioned here that if H1 = H2 = n , then using Gale’s 

Theorem of the alternatives for linear inequalities, we can very easily 
prove that the above conditions are necessary as well.

Example 4.1: The functions f (x) = - 2x2  and g (x) = log(x) are invex with 
respect to same η( , )⋅ ⋅ . One of the several choice forη( , )⋅ ⋅  is x - y. 

5.  Some Basic Operations

Theorem 5.1: Let f : I ⊂ H1 → H2 is invex with respect to η( , )⋅ ⋅  and ψ : H2 → 


 be a monotonic increasing differentiable convex function, then the composite 
function ψ ° f is invex with respect to the same η( , )⋅ ⋅ .

Proof: Since ψ is convex, we know that

D h h h h h h h Bψ ψ ψ( )( ) ( ) ( )) ,1 2 1 2 1 1 2 2− ≤ − ∈, . Let h1=f (x1) and h2=f (x2) for 
some x1, x2 ∈ I. Then, we have, 

	 D f x f x f x f x f xψ ψ ψ(( ))( ( ) ( )) ( ( ) ( ( ))1 2 1 2 1− ≤ − 	 (14)

 Now using Proposition 2.1 and (13) we obtain, 

	

D f x x x D f x Df x x x
D f xK

( )( )( ( , ) = ( ( )) ( )( ( , )
( ( ))(

1 1 2 1 1 1 2

2 1

ψ η ψ η
ψ
 

≤ ff x f x

f x f x

f x f x

K

( ) ( ))

( ( )) (( ))

= ( ) ( )

2 1

2 2 1

2 1

−

≤ −

−

ψ ψ

ψ ψ  	

(15)

 which implies that ψ ° f is invex with respect to η( , )⋅ ⋅ . 

Theorem 5.2: Let f1, f2,....., fn : I ⊂ H1 → H2 are continuous and F-differen-
tiable real valued invex functions with respect to same η( , )⋅ ⋅  at x0 ∈ I. Then 

1
( ) = ( )min

≤ ≤
i

i n
f x f x  is also invex at x0 with respect to same η( , )⋅ ⋅ .
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ON INVEX FUNCTIONS� 7

Proof: Let ∆ ∈
≤ ≤

= { {1,2,.........., } : ( ) = ( )}0
1

0i n f x f xi
j n

jmin . Then we have for 

i ∈ ∆  and for all j ∉ ∆ , fi (x0) <K2  fj (x0).  Since the functions   f1, f2,....., fn 
are continuous, there exist a neighbourhood Nδ(θ) such that for every x ∈ 
Nδ(θ), i ∈ ∆, j ∉ ∆ 

	  
f x x f x f x f x xi K i K j K j( ) <  ( )

3
<  ( )

3
<  ( )0 2 0 2 0 2 0+ + − +

ε ε

 
 Which implies that, 

	 1
0 0( ) = ( )

≤ ≤ ∈∆
+ +

i n
i

i
if x x f x xmin min

		
(16)

 Now, since every F-differentiable function is G-differentiable, we have, 
 

	

Df x h
f x th f x

t
f

t

t

i n
i

( ) =
( ) ( )

           =
(

0
0

0 0

0

1

→

→

≤ ≤

+ −
lim

lim
min xx th f x

t
f x th

i n
i

t

i
i

i

0
1

0

0

0

) ( )

      =
( )

+ −

+ −

≤ ≤

→

∈∆ ∈∆

min

lim
min min ff x

t
f x th f x

t
Df x h

i

t i

i i

i
i

( )

    =
( ) ( )

= ( )

0

0

0 0

0

→ ∈∆

∈∆

+ −
limmin

min
 

Therefore we can say, 

		
Df x Df x

i
i( ) = ( )0 0

∈∆
min

	
(17)

 Now by the invexity of fi , ∀ ∈ +x x N0 (0)δ  and ∀ ∈∆i  we have, 

	

Df x x x f x f x

Df x x x f x
i K i i

i
i K i

( ) ( , ) ( ) ( )

( ) ( , ) ( )

0 0 2 0

0 0 2

η

η

≤ −

⇒ ≤
∈∆

min −−

⇒ ≤ −

⇒
∈∆ ∈∆

∈∆

f x

Df x x x f x f x

D

i

i
i K i

i
i

i

( )

( ) ( , ) ( ) ( )

0

0 0 2 0min min

min

η

ff x x x f x f xi K
i

i
i

i( ) ( , ) ( ) ( )0 0 2 0η ≤ −
∈∆ ∈∆

min min
	

(18)
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8� S. CHATTERJEE AND R. N. MUKHERJEE

From (10) and (11) we get,

	  
Df x x x f x f xK( ) ( , ) ( ) ( )0 0 2 0η ≤ −

Note that, the above theorem does not hold for convex functions. The 
following example is an illustration to that: 

Example 5.1: Consider f1, f2 : → 


 such that f1(x) = (x + a)2 and f2(x) = (x 
- a)2 , a ∈  . it is obvious that both f1 and f2 are convex, but the following 
function is non-convex: 

 	
f x f x f x

x a x

x a x
( ) = { ( ), ( )} =

( ) , 0

( ) , > 0
1 2

2

2
min

+ ≤

+





  

 However f is invex at each x ∈ 


 with respect to η(x, y) = x - y.

6.  Some Generalizations

Definition 6.1: The F-differentiable function f : I → H2 is pseudoinvex if 
there exist η( , )⋅ ⋅ : I × I → H1 and such that, for all x, y ∈ I , 

	
θ η θ≤ ⇒ ≤ −K KDf y x y f x f y

2 2
( ) ( , ) ( ) ( )

	
(19)

 f is said to be quasiinvex if, 

	
f x f y Df y x yK K( ) ( ) ( ) ( , )

2 2
− ≤ ⇒ ≤θ η θ

	 (20)

Definition 6.2: A differentiable function f defined on an open set S ⊆ H1 is 
called η-pseudolinear if f and - f are pseudo-invex with respect to the same 
η.

Definition 6.3: The function the function η :S × S → H1 satisfies Condition 
C, if forevery x y S y y x y x y, : ( , ( , )) = ( , )∈ + −η η λη  and ( , ( , )) =+x y x yη η  
(1 ) ( , )− x yλ η for all λ ∈[0,1].

Theorem 6.1: Let f  be a differentiable function defined on an open invex set  
I ⊆ H1 and  η : I × I → H1 satisfies Condition C. Suppose that f is η-pseudolinear 
on I, then for all x, y ∈ S, Df(y)η(x,y) = θ iff f(x) = f(y).

D
ow

nl
oa

de
d 

by
 [

Sa
nd

ip
 C

ha
tte

rj
ee

] 
at

 2
0:

11
 1

4 
Ja

nu
ar

y 
20

16
 



ON INVEX FUNCTIONS� 9

Proof: Suppose that Df(y)η(x,y) = θ. Since f is η-pseudolinear on I, f and - f 
both are pseudo-invex with respect to η. Therefore we have 

	

θ η θ

η θ θ

≤ ⇒ ≤ −

≤ ⇒ − ≤

K K

K K

Df y x y f x f y

Df y x y f x f y
2 2

2 2

( ) ( , ) ( ) ( )

( ) ( , ) ( ) ( )
	

(21)

 Combining these inequalities, we obtain 

	 Df y x y f x f y( ) ( , ) = ( ) ( ) =η θ θ⇒ − 	 (22)

Conversely, let us assume that f (x) = f (x), x, y ∈ I. It can be very 
easily proved that this assumption implies f y x y f y( ( , )) = ( )+ λη , for all 
λ ∈ (0.1).

If f y f y x yK( ) < ( ( , ))
2

+ λη , then by the considering the contra-
positive statement of the definition of pseudo-invexity (12) for - f with 
respect to η , we have 

	 Df (y) η(y, z) ≤K2
 θ	 (23)

where z = y + λη(x,y).

Now, from Condition C we have, for λ ∈ (0.1),

	

η λ η

η λη
λ
λ
η

( , ) = (1 ) ( , )

( , ) = ( , ) =
1

( , )

x z x y

y z x y x z

−

− −
− 	

(24)

Therefore, from (22), we have Df z x z K( )(
1

( , ))
2

−
−

≤
λ
λ
η θ  and hence 

	 θ ≤ K2 Df (z) η(y, z)	 (25)

Therefore, by pseudoinvexity of f, we have, 

	 f (z) ≤ K2  f (x)	 (26)

 This contradicts the assumption that f x f y f y x y f zK( ) = ( ) < ( ( , )) = ( )
2

+ λη . 
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10� S. CHATTERJEE AND R. N. MUKHERJEE

Similarly, using pseudo-invexity of - f, one can also show that the 
assumption f y x y f y( ( , )) < ( ), (0,1)+ ∀ ∈λη λ , leads to a contradiction.
This proves the claim that, f y x y f y( ( , )) = ( ), (0,1)+ ∀∈λη . Now, we 
know that if F-differential exists then G-differential also exist and they are 
equal. Therefore, 

 	
Df y x y f y x y f y( ) ( , ) = ( ( , ) ( ) =

0
η

λη
λ

θ
λ→

+ −
lim
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