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Abstract

In this paper the concept of quasiinvexity has been introduced on a class of semidefinite
minimization problems in the field of complex numbers. A global optimality condition
for such problems has also been obtained.
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1 Introduction

In 1977, Zang, Choo and Avriel [3] studied functions whose stationary points are global
minima. By considering the level sets of a real valued function as a point-to-set mapping
and by examining its semicontinuity property, Zang, Choo and Avriel obtained the result
that a real valued function, defined on a subset of Rn and satisfying some mild regularity
conditions, belongs to the class of functions whose stationary points are global minima if
and only if the point-to-set mapping of its level sets is strictly lower semicontinuous. A few
years later, in 1981, M. A. Hanson[6] introduced the concept of invexity for differentiable
functions in Rn. Hanson actually generalized one of the most important properties of con-
vex functions that they are always bounded on one side by their tangent hyperplanes at
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any point which facilitates the use of linear bounds and approximations. Hanson weaken
the class of convex functions by introducing nonlinear bounds using the generalization of
Taylor’s expansion. Hanson’s introduction of invexity has been a significant generalization
of convex functions. Hanson’s initial result inspired a great deal of subsequent work which
has hugely expanded the role and applications of invexity in nonlinear optimization and
other branches of pure and applied sciences. In 1985, Craven and Glover [2] showed that
the class of invex functions is equivalent to the class of functions whose stationary points are
global minima. This property played the pivotal role in the introduction of invex functions
in optimization theory.
Several researchers have generalized the concept of invexity and found some interesting char-
acteristics of such generalizations which has been very useful in the context of optimization
and equilibrium problems. The concept of quasiinvex functions have been introduced by Pini
[8]. Pini proved that a differentiable preinvex function is invex but not conversely. Later,
Mohan and Neogy [14] redefined quasiinvex functions with some rectifications. Mohan and
Neogy stiudied invex sets in detail and showed how to build such sets into Rn using invex
sets in a lower dimensional space. In [11], Kaul and Kaur referred the invex, pseudoinvex
and quasiinvex functions as η-convex, η-pseudoconvex and η-quasiconvex respectively. In
[12, 13], Chatterjee and Mukherjee studied invex functions in Hilbert spaces and obtained
the necessary and sufficient condition for the existence of global optimal solution of invex
programming problems posed in an arbitrary Hilbert space.
Semidefinite Programming can be regarded as an extension of linear optimization prob-
lems which has many applications in different branches of science and engineering . Most
of the interior point methods of linear programming has been generalized to semidefinite
convex programming or semidefinite quasiconvex programming in the field of real numbers
[4, 5, 7, 9, 10].
In this paper, a new class of optimization problems to be known as Semidefinite Quasiinvex
Programming Problem has been introduced and necessary and sufficient condition for the
existence of global optima of such class of problems has been discussed. The concept has
been generalized in the field of complex numbers.

2 Prerequisites

Definition 2.1. [5] The Frobenius norm of a matrix A = (aij)m×n is defined as

‖A‖F =

√√√√
n∑

i=1

n∑

i=1

aij =
√
Tr(AAH ) (2.1)

where AH is the transjugate of A.
Definition 2.2. [5] The Frobenius product of two matrices A = (aij)m×n and B = (bij)m×n

is defined as

〈A,B〉F = Tr(AHB) = Tr(BHA) (2.2)
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It is obvious that ‖A‖F =
√
〈A,A〉F .

Definition 2.3. [9] A Semidefinite Minimization Problem is defined as follows:

Min〈C,X〉F
subject to 〈Aj , X〉F ≤ bj

j = 1, 2, 3, ....,m, X � 0
(2.3)

where C,X,Aj ∈ Rn×n

Definition 2.4. [5] The function f : Cn×n → R is said to be coercive if

lim
‖x‖→∞

f(x) = ∞ (2.4)

Definition 2.5. [10] The level set Ef(Z)(f) of the function f : Cn×n → R at a point
Z ∈ Cn×n is defined as

Ef(Z)(f) = {Y ∈ Cn×n : f(Y ) = f(Z)} (2.5)

Note. Let A and B be two Hermitian matrices, then Tr(AB) ∈ R.

Let H be a real Hilbert space and K ⊂ H be a pointed closed convex cone, i.e., K ∩−K =
{θ}, with nonempty interior. Let us consider the following notations for x, y ∈ H:

x 5K y ⇐⇒ y − x ∈ K
x 6K y ⇐⇒ y − x ∈ K \ {θ}
x <K y ⇐⇒ y − x ∈ intK

Definition 2.6. [13] A set S ⊂ H is said to be η − invex if there exist a vector function
η : S × S → H such that

x+ λη(x, y) ∈ S, ∀x, y ∈ H and for all λ ∈ [0, 1]

Let H1 and H2 be two real Hilbert spaces, K2 be a pointed closed convex cone in H2 and
I ⊆ H1 is an open invex set. Further, suppose that, f : I → H2 be a F-differentiable.
Definition 2.7. [13] The function f is said to be η− invex if there exist a vector function
η : I × I → H1 such that,

Df(y)η(x, y) ≤K2 f(x) − f(y), ∀ x, y ∈ I

It is to be noted that Df(y)η(x, y) denotes the value obtained by operating F-differential of
f at y ∈ I on η(x, y) ∈ H1. If there is no confusion regarding η we would simply say that,
f is invex.
Remark: If H1 = Rn, H2 = R and η(x, y) = (x − y), Definition 2.2.2. coincides with the
definition of a real valued convex function in Rn.
Example 2.2.1. [13] Let us consider the function f : L2[0, 1] → L2[0, 1] defined as,

f(x(t)) = (x(t) − sinx(t)) , x > 0, n ∈ N



Application of the Concept of Quasiinvexity 55

Clearly, f(x)is non-convex in nature. But it can be verified that f(x) is invex considering

η(x(t), y(t)) =





4sin
x(t) − y(t)

2
cosx(t) − 1

if x(t) 6= 2nπ

0 otherwise

Definition 2.5.1.[13] The F-differentiable function f : I → H2 is pseudoinvex if there exist
η(·, ·) : I × I → H1 and such that, for all x, y ∈ I,

θ ≤K2 Df(y)η(x, y) ⇒ θ ≤K2 f(x) − f(y)

f is said to be quasiinvex if,

f(x) − f(y) ≤K2 θ ⇒ Df(y)η(x, y) ≤K2 θ

3 Real Valued Quasiinvex Matrix Functions on Cn×n

Definition 3.1. Let X be a matrix in Cn×n and f : Cn×n → R. The derivative of f is
defined by

f ′(X) = (∂f(X)
∂xij

)n×n

If f is differentiable, f ′(X) is symmetric and H is Hermitian, then by Taylor’s formula

f(X +H) − f(X) = 〈f ′(X),H〉F +O(‖H‖F )

Definition 3.2. A set D ⊂ Cn×n is η− invex if there exist η : Cn×n ×Cn×n → Cn×n such
that

Y + αη(X,Y ) ∈ D for all X,Y ∈ D and α ∈ [0, 1]

Definition 3.3. The function f : D → R is said to be η − quasiinvex if

f(Y + η(X,Y )) ≤ max {f(X), f(Y )} for all X,Y ∈ D

It is to be noted that f becomes a quasiconvex function when η(X,Y ) is chosen to be
X − Y .
Definition 3.4. Let Hn×n be the set of all n × n Hermitian matrices. The function
f : Cn×n → R is said to be η − invex if f ′(·) is symmetric and there exist η(·, ·) : Cn×n ×
Cn×n → Hn×n such that,

f(Y + η(X,Y )) ≤ 〈f ′(Y ), η(X,Y )〉F for all X,Y ∈ H

It is to be noted that if η(X,Y ) = X − Y , then f becomes convex. Henceforth, Unless η
needs to be mentioned specifically, we would simply simply refer a function as quasiinvex
or invex.
Theorem 3.1. A function f : Cn×n → R is quasiinvex iff the lower level set Lc(f) = {X ∈
Cn×n : f(X) ≤ c} is invex for all c ∈ R.
Proof: Let c ∈ R and X,Y ∈ Lc(f). By the definition of quasiinvexity,we have,
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f(Y + αη(X,Y )) ≤ max {f(X), f(Y )} ≤ c, ∀α ∈ [0, 1]

which implies that Y + αη(X,Y ) ∈ Lc(f) i.e. Lc(f) is invex. Conversely, let Lc(f) is invex
for all c ∈ R. Define c∗ = max{f(X), f(Y )}. Then X ∈ Lc∗(f) and Y ∈ Lc∗ (f). By the
invexity of Lc∗(f),

f(Y + αη(X,Y )) ≤ c∗ = max{f(X), f(Y )}

Hence f is quasiinvex.
Theorem 3.2. Let f : Cn×n → R be a quasiinvex differentiable function. Then f(X) ≤
f(Y ) for X,Y ∈ Cn×n implies that 〈f ′(Y ), η(X,Y ))〉F ≤ 0, provided f ′(Y ) is symmetric
and η(X,Y ) is Hermitian.
Proof: By the quasiinvexity of f ,
f(Y + αη(X,Y )) ≤ max {f(X), f(Y )} = f(Y ), ∀α ∈ [0, 1]
⇒ f(Y + αη(X,Y )) − f(Y ) ≤ 0
⇒ α

(
〈f ′(Y ), η(X,Y ))〉F + o(α‖η(X,Y )‖F

α

)
≤ 0

⇒ 〈f ′(Y ), η(X,Y ))〉F ≤ 0

4 Semidefinite Quasiinvex Programming Problem on

Cn×n

Let us denote the set of all n × n Hermitian matrices by Hn×n. Consider the following
minimization problem

Minimize f(X)
subject to gj(X) ≤ bj

X � 0
(4.1)

where f ,gj : Hn×n → R, j = 1, 2, .....,m are η-quasiinvex differentiable functions, such that
η(·, ·) is Hermitian, f ′(·) is symmetric and X is positive semidefinite. We call the problem
as the semidefinite quasiinvex programming problem.
Example 4.1. Following is an example of a semidefinite quasiinvex programming problem.

Minimize f(X) = ‖X‖2
F

Subject to ‖A‖F ≤ ‖X‖F ≤ ‖B‖F

where A =
(

1 i
−i 1

)
, B =

(
2 2i

−2i 3

)
and X � 0

Let D = {X ∈ Rn×n : gj(X) ≤ bj, j = 1, 2, 3, .....,m}. The following theorem provides a
global optimality condition for the problem (1).
Theorem 4.1. Let Z be a solution of (1). Then 〈f ′(X), η(X,Y )〉F ≥ 0, ∀ Y ∈ Ef(Z)(f), X ∈
D. Moreover, if f is coercive , quasiconvex and f ′(X + αf ′(X)) 6= 0, ∀X ∈ D and α ≥ 0,
then the condition is sufficient also.
Proof: Let us assume that Z is a solution of (1). Let X ∈ D and Y ∈ Ef(Z)(f). Then
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we have f(Y ) − f(X) = f(Z) − f(X) ≤ 0. Therefore using Theorem 3.1 we can conclude
〈f ′(X), η(X,Y )〉. Conversely, suppose that Z is not a solution of (1). Then there exist a
U ∈ D such that f(U ) < f(Z). For α > 0, let us define Yα = U + αf ′(U ).

f
(
U + αf ′(U )

)
− f(U ) = α

(
‖f ′(U )‖2 + o(α‖f ′(U)‖)

α

)

Using Theorem 3.2. and the assumption, it can be proved that f(Yα) > f(U ) for all
α > 0. Now, since f is coercive, f(Yα) → ∞ as α → ∞. Therefore there exist α̂ such
that f(Yα̂) > f(Z) > f(U ). Which implies that there exist ᾱ such that f(Yᾱ) = f(Z), i.e.
Yᾱ ∈ Ef(Z)(f). Since η(·, ·) is quasiconvex,

〈f ′(U ), η(U, Yᾱ)〉F = 1
ᾱ 〈Yᾱ − U,U − Yᾱ〉F = − 1

α‖Yᾱ − U‖2 < 0,

a contradiction. Hence Z must be a solution of (1).

Note: For Example 4.1., it can be verified that Z =
(

2 0
0 0

)
.

In the next section, we are going to present a special case of (4.1), motivated by Enkhbat
and Bayartugs [1].

5 Semidefinite Convex Programming Problems in Cn×n

Let us consider the following semidefinite convex program:

min
X∈D

f(X) (5.1)

where f : Cn×n → R is strongly convex and continuously differentiable, and D is an ar-
bitrary compact set in Hn×n. In this case, we can weaken Theorem 4.1. as stated in the
following theorem.
Theorem 5.1. Let Z be a solution of (5.1). Then

〈f ′(X), X − Y 〉 ≥ 0, ∀Y ∈ Ef(Z)(f), X ∈ D (5.2)

If, in addition,
min
X∈D

‖f ′(X)‖F > 0 (5.3)

holds, then the condition above is also sufficient.
Proof. Assume that Z is a solution of (5.1). Consider X ∈ D and Y ∈ Ef(z)(f). Then, by
convexity of f , we have 0 ≥ f(Z) − f(X) = f(Y ) − f(X) ≥ 〈f ′(X), Y −X〉F .
Let us prove the sufficiency using the method of contradiction. Assume that (5.2) holds and
there exist a point U ∈ D such that f(U ) < f(Z). Clearly,f ′(U ) 6= 0 by assumption (5.3).
Now define Uα as Uα = U + αf ′(U ). Then, by convexity of f , we have

f(Uα) − f(U ) ≥ 〈f ′(U ), Uα − U 〉F = α‖f ′(U )‖2
F (5.4)

which implies
f(Uα) ≥ f(U ) + α‖f ′(U )‖2

F > f(U ) (5.5)
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Then find α = ᾱ such that,

f(U ) + ᾱ‖f ′(U )‖2
F = f(Z) (5.6)

i.e., ᾱ = f(Z)−f(U)
‖f ′(U)2F

> 0.
Thus, we get,

f(Uᾱ) ≥ f(U ) + ᾱ‖f ′(U )‖2
F = f(Z) > f(U ) (5.7)

Define a function h : R+ → R as

h(α) = f(U + αf ′(U )) − f(Z) (5.8)

It is clear that h is continuous on [0,+∞]. Note that h(ᾱ ≥ 0 and h(0) < 0. There are two
cases with respect to the values of h(ᾱ) which we should consider.
Case I: Let h(α) = 0 (i.e., f(U + ᾱ)f ′(U )) = f(Z), then

〈f ′(U ), U − Uᾱ〉F = −〈f ′(U ), ᾱf ′(U )〉F
=−ᾱ‖f ′(U )‖2

F < 0

contradicting condition (5.3).
Case-II: Let h(ᾱ) = 0 and h(0) < 0. Since, h is continuous, there exists a point α0 ∈ (0, ᾱ
such that h(α0) = 0, i.e., f(U + α0f

′(U )) = f(Z). Then we have

〈f ′(U ), U − U0〉F = −α0‖f ′(U )‖2
F < 0 (5.9)

again contradicting (5.3).
Thus, in both the cases we find contradictions which proves the theorem.
Let us define,
ψ(Z) = min

Y ∈Ef(Z) (f)
P (Y ), Z ∈ D, where P (Y ) = min

X∈D
〈f ′(X), X − Y 〉F , Y ∈ Hn×n.

On the basis of Theorem 5.1. and the definition of ψ(Z) let us generalize the Algorithm
MIN, proposed by Enkhbat and Bayartugs [10], for a strongly convex function f such that
f ′(·) is symmetric and a compact set D :
Algorithm MIN :
Step I: Choose a feasible point X◦ ∈ D. Set k = 0.
Step II: Solve the following problem:

min
Y ∈Ef(XK )(f)

P (Y )

Let Yk be a solution of this problem (i.e.,P (Yk) = min
X∈D

〈f ′(X), X−Yk〉F = min
Y ∈Ef(Xk )(f)

P (Y ))

and let ψ(Xk) = P (Yk) = 〈f ′(Xk+1), Xk+1 − Yk〉F .
Step III: If ψ(Xk) = 0 then the solution is Xk, otherwise, let k=k+1 and return to Step II.
The convergence of the algorithm is based on the following theorem:
Theorem 5.2. Assume that f : Hn×n → R is strongly convex and continuously differ-
entiable and D is a compact set in Cn×n. Let minX∈D ‖f ′(X)‖ > 0. Then the sequence
{Xk, k = 0, 1, ...} generated by Algorithm MIN is a minimizing sequence for problem (5.2)
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and every accumulation point of the sequence {Xk} is a global minimizer of (5.1).
Proof. From the construction of Xk, we have Xk ∈ D and f(Xk) ≥ f∗ for all k, where
f∗ = f(X∗) = min

X∈D
f(X). Clearly, f ′(X∗) 6= 0 by assumption. Also, note that for all

Y ∈ Ef(Xk)(f) and X ∈ D, we have
ψ(Xk) = min

Y ∈Ef(Xk )(f)
min
X∈D

〈f ′(X), X − Y 〉F ≤ 〈f ′(X), X − Y 〉F ≤ 0 Now, if there exist a k

such that ψ(Xk) = 0 then the proof is complete.
Therefore, let us assume that ψ(Xk) < 0 for all k and prove the theorem by contradiction.
Let us suppose that Xk is not a minimizing sequence for the problem (5.1). Then,

lim
k→∞

inf f(Xk) > f∗ (5.10)

By the definition of ψ(Xk) and Algorithm MIN, we have

P (Yk) = ψ(Xk) = min
Y ∈Ef(Xk )(f)

min
X∈D

〈f ′(X), X − Y 〉F = 〈f ′(Xk+1), Xk+1 − Yk〉F (5.11)

and by the definition of level set we have f(Yk) = f(Xk). The convexity of f implies that

f(Xk) − f(Xk+1) = f(Yk) − f(Xk+1) ≥ 〈f (Xk+1), Yk −Xk+1〉F = −ψ(Xk) > 0 (5.12)

Hence we obtain f(Xk+1) < f(Xk) for all k, and the sequence {f(Xk)} is strictly decreasing.
Since the sequence is bounded below by f∗, it is convergent and satisfies

lim
k→∞

(f(Xk+1 − f(Xk)) = 0 (5.13)

Now from (16) and (17) we have
lim

k→∞
ψ(Xk) = 0 (5.14)

From (18) we have f(Xk) > f(X∗) for all k. Now define a ray Vα as follows:

Vα = X∗ + αf ′(X∗), α > 0 (5.15)

Then by the convexity of f , we have

f(Vα) − f(X∗) ≥ 〈f ′(X∗), Vα −X∗〉F = α‖f ′(X∗)‖2 (5.16)

which implies that,

f(Vα) ≥ f(X∗) + α‖f ′(X∗)‖2 > f(x∗), α > 0 (5.17)

Choose α = αk such that
f(X∗) + αk‖f ′(X∗)‖2 > f(Xk) (5.18)

i.e.,

αk >
f(Xk) − f(X∗)

‖f ′‖2
> 0 (5.19)

Now, define a function hk : R+ → R as

hk(α) = f(X∗ + αf ′(X∗)) − f(Xk) (5.20)
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It is quite obvious that hk is continuous on [0,∞). Note that hk(αk) > 0 and hk(0) < 0.
Since hk is continuous, there exist a point ᾱk ∈ (0, αk) such that hk(ᾱk) = 0,i.e., f(Vᾱk ) =
f(Xk) and Vᾱk = X∗ + ᾱkf

′(X∗).It is further to be noted that

ψ(Xk) = min
Y∈Ef(Xk )(f)

min
X∈D

〈f ′(X), X − Y 〉F ≤ 〈f ′(X∗), X∗ − Vᾱk〉F (5.21)

Taking into account Vᾱk = X∗ + ᾱkf
′(X∗), we have,

−ψ(Xk) ≥ 〈f ′(X∗), Vᾱk −X∗〉F = ‖f ′(X∗)‖‖Vᾱk −X∗‖
≥ min

X∈D
‖f ′(X)‖‖Vᾱk −X∗‖ > 0 (5.22)

Since ψ(Xk) → 0 as k → ∞ we have,

lim
k→∞

Vᾱk = X∗ (5.23)

Now, the continuity of f implies,

lim
k→∞

f(Xk) = lim
k→∞

f(Vᾱk ) = f(X∗) (5.24)

which is a contradiction to (6.11). Consequently, {Xk} is a minimizing sequence for the
problem (6.2). Now, since D is compact, there exist a subsequence {Xkn} which converges
to X̄ (say) in D such that,

lim
n→∞

f(Xkn ) = f(X̄ ) = f∗ (5.25)

which completes the proof.

6 Conclusion

Several authors have discussed numerous properties of semidefinite convex programming
problems. There exists some nice computer oriented algorithms also to solve such kind of
problems. In this paper, the concept of convexity has been generalized to the concept of
invexity for semidefinite programming problems. The underlying field has also been general-
ized as a field of complex numbers. As a result, the class of optimization problems for which
the stationary point is a global minima, has been weakened further. Theorem 5.2. ensures
the existence of a solution for such class of problems. Hence a computer oriented algorithm
for the semidefinite quasiinvex programming problems can also be designed, possibly when
η(·, ·) is fixed.
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Informatics 29(4) (2015), 337 - 342.

[14] S.R. Mohan, S.K. Neogy, On invex sets and preinvex functions, Journal of Mathematical
Analysis and Applications 189 (1994), 901 - 908.


