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1. Introduction

Ben-Israel and Charnes [2] first determined an explicit solution of a Linear
Programming Problem using the generalized inverse of the coefficient matrix. Those
problems were further extended in [17 & 18]. Also some illustrative methods were
shown by the authors[17 & 18]. Sivakumar and Kulkarni [11, 12 & 13] extended
the results of [2, 17 & 18] in infinite dimensional spaces.

Further K. C. Sivakumara and J. Mercy Swarna [15] considered LPP in infinite
dimensional space. They have characterized the solution of those problems in
corresponding space by functional analytic technique.

Due to the particular nature of the transportation problem the authors in this
paper have developed a uniform theory for solving transportation problems in
infinite dimensional space.

Moreover they have shown that the results obtained are the same as in the
finite dimensional case which exist in standard literature. An example has been
sited to illustrate the theory.

Let (X, x X, ¥, x ¥)) and (X, Y)) be two dual pairs of real Banach Spaces,

1
where X and X, are real Banach Spaces and Y, Y, are conjugate spaces respectively,

ie. Y, =X and Y, =X Letoc=(x,y) € X, x X|
Let 4,4 : X, x X, — X, be two linear napping such that
A (W=x and A, (<) =y.
Let 4 : X, x X, > X, x X, be a linear operator such that 4 = (4, Ay).

Let0 € Y, x Y. Then consider the following Linear Programming Problem:
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Minimize 0 (<)
Subject to 4 (<) = (a, b), where (a, b) € X, x X.

Such problems will be called as Infinite Primal Transportation Problem (IPTP).
Clearly the dual of this problem will be called Infinite Dual Transportation Problem
(IDTP) and will be as follows:

Maximize w(a) + v(b)
Subject to 4'(w, v) < 6.
Where w,vel,.

In this paper we will mainly discuss the characterization of these problems in
Infinite Dimensional Banach Spaces. Here we take approach similar to [2]. In the
next section we present the preliminaries that are required in the rest of the paper.

2. Preliminaries & Notations

Definition 2.1: Let X be a real vector space. Then X is called partially ordered
vector space if X has a partial order ‘<’ defined on it satisfying the following: for
x,yeXandx<y,x+u<y+uVue Xand ocx < ocy V real scalar oc > 0.

Definition 2.2: Let X be a partially ordered real vector space. Then the subset
C = {x € X |x > 0} is called the positive cone of X. C will be called a strictly
positive cone if x <y and y < x imply x =y for every x, y € X.

Definition 2.3: A vector space is said to be partially ordered Banach Space if
it is a partially ordered vector space and also a Banach Space with respect to a
suitable norm.

Definition 2.4: Let X=X x X be a real Banach Space and X be a partially
ordered Banach Space with P, as the positive cone. Let 4 : X — X be linear such
that 4 = (4, Ay). Let6 € Y, x Y, and @, b € X,. Consider the problem called Infinite
Primal Transportation Problem denoted as IPTP (a, b, 6, A)

Min 0 (<)
Subject to A4 (<) = (a, b).

A vector oc” € Xis said to be feasible if 4 (oc*) = (a, b). A feasible vector oc”
is said to be optimal if 6 (oc*) < 6 (o) for every feasible vector oc.

Remark: It is to be noted that the mapping 4 is actually the identity mapping
on X.

Let(x,y) € X. Now 4 (x,y) = (Ax,Ay)(x,y)
=(A,(x, ), 4 (x, y)) = (x, )
which implies 4 = 1.
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Definition 2.5: Let X be a partially ordered real Banach space. Let / denote
the identity map on X. We say that X is an Optimal Solution space if IPTP (a, b, 0, 1)
has an optimal solution for all @, b € Xand 6 € X".

Definition 2.6: A class of subsets of an arbitrary space Xis said to be a G-algebra
if X belongs to the class and the class is closed under the formation of countable
unions and of complements.

Definition 2.7: A measure p on a class of sets ® is o-finite if, for every set
E e R,wehave F = U E, for some sequence {E } suchthat £ € Rand pu(E£) <oo

n=1

for each n.

3. Some Results on Optimal Solution Space

Theorem 3.1: Let m be a 5-finite positive measure on a d-algebra M in a non-
empty set ¥ and (Y, n), 1 < p < oo be a space of (equivalent classes) measurable
p-integrable functions on Y. Then (Y, ) is an Optimal Solution Space.

Proof: Let X=L'(Y,n), 1 <p<owand C:={fe X:f>0a.e. (n)}. Then Xis
partially ordered Banach Space with C as the positive cone. Let © € X". Then there
exists a unique & € L'(Y, n), where ¢ is the conjugate exponent of p, (by Reisz
Representation Theorem) such that V f € X

0(f) = [ hfdp
Y

Leta, b € Xwitha <b and IPTP (a, b, 6, A) be feasible. Define Y := {y € Y:
h(y)20}; Y :=1{y € Y:h(y) 20} and n = by, + ay,, where y  denote the
characteristic function of a set S. It follows then that i is measurable.

Further [In[Pdu<||b| +]all”
This shows that 1 € X.

For any u € X satisfying a <u < b a.e.(1) we have

0(n—u)= [h(n-u)dn

= [ h—wdp+ [ h(n-u)dn
Y.

Y,

<0
=0(Mm)<6(v)

This 7 is optimal for the problem IPTP (a, b, 0, 4), i.e. (Y, ) is an Optimal
Solution Space.
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Theorem 3.2: Let p be a o-finite positive measure on a g-algebra M in a non-
empty set Y and L'(Y, n), 1 <p <o be the space of (equivalent classes) measurable
p-integrable functions on Y. Then L'(Y, n) x L°(Y, w) is an Optional Solution space.

Proof: Let X=LY,n)x (Y,
C={(f,9) e XxX:f<0 and g2>0 aein(p)}

Then X is a partially ordered Banach Space with C as a positive cone. Let
® = (6, &) eX". Then there exists a unique H = (/,, k)& L’(Y, p) x L'(Y, n) such that

0(/,2)=0,8)(f,g) [ hfdpuxp) [ kgd(uxp)

YxY YxY

Leta, b € X and IPTP (a, b, ¢, A) be fasible.

Define (Y3 1), 1= {0 0) ), K, () < 03;
YxY) ={0,»): h(), KK, <0}
and y::bXWxYL4_bXWXYH

where y denote the characteristic function of the set S. It is evident that y is
measurable.

Further

[ Wrrduxp) = [ 1byy.y, + @y I d(@xp)

Yx¥ Yx¥
Io17+all”

ve X. For any feasible solutionu € Xs.t.a<u<b
We have

d-w= [ hy-wduxp- [ KF-wdpxp

Yx¥ YxY
<0

¢(1) < o).

vy is optimal for the problem IPTP (a, b, 0, A) i.e. (Y, p) x L°(Y, ) is an
optional solution space.

Remark: It can be proved that the product of an arbitrary no. of Optimal
Solution Spaces is an Optimal Solution Space.
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4. An Algorithm for Solving the IPTP

Step I: Verify whether the operator in the constraint admits any inverse or not. If
it is not having any inverse then determine the Moore-Penrose inverse
[18] of'it.

Step II: Standardize the infinite transportation problem i,e. we have to operate
the inverse (or Moore-Penrose inverse) on the constraint to convert it
into the form of IPTP.

Step III: Compare both the sides of the constraint to get the optimal solution.

Remark: It is to be noted that IPTP admits unique optimal solution because of
the existence of identity operator in the constraints. Now a transportation problem
in infinite dimensional space may be considered as infinite number of sources
with some available resources and infinite number of destinations with some
demands. Then the condition that an IPTP is solvable is that the infinite series of
the availabilities and the infinite series of the demands must converge. Now since
the convergence is unique the problem will have a unique optimal solution.

The theory is illustrated by the following example:
Example 4.1: Let X=L?[0, 1]. Define 4 =X x X —> X x X by

A (x,(s), x,(5)) = {s j £x,(f) dt + 5 't[ o, (t)dt,u j £x, (1) dt +u’ j 7%, (1) dl]
0 0 0 0

Let x,(s) = 0.Which implies that

A(x,(s), 0) = [s j- £x,(t)dt +5° j ix,(t) dt, 0} s, tef0,1]
0 0

1, 1
Let b(s)= — s~ +—=s and O (s) = s?
) 12 20 )
Consider the following IPTP:
1
Minimize {j £x,(t) dt, OJ
0
Subject to

1 1
A(x,(s),0)= —sz+—s,0)
,-0) (12 20

x,(s)20,¢s¢e[0,1]
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It follows that the Moore-Penrose inverse of 4 is given by 4* = DA where
1 31 =24)(0 0
240\-40 31)\0 ©
Now it can be verified that the optimal value is (%, Oj

Note: Assignment problem in infinite dimensional spaces can be considered
as a particular case if one consider the spaces under consideration are of the same
cardinality (i,e. they are isomorphic).
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