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Abstract. In the present study non-linear free vibration analysis is performed on a linearly 

tapered Axially Functionally Graded (AFG) beam resting on an elastic foundation with 

different boundary conditions. Firstly the static problem is carried out through an iterative 

scheme using a relaxation parameter and later on the subsequent dynamic problem is solved as 

a standard eigen value problem. Minimum potential energy principle is used for the 

formulation of the static problem and for the dynamic problem Hamilton’s principle is utilized. 

The free vibrational frequencies are tabulated for different taper parameter and different 

foundation stiffness. The dynamic behaviour of the system is presented in the form of 

backbone curves in dimensionless frequency-amplitude plane. 

1. Introduction 

Multilayer composite materials find large-scale utilisation in aerospace, civil, mechanical engineering 

applications, as well as automotive and nuclear industries due to their outstanding behaviour such as 

high ratio of stiffness and strength to weight, low maintenance cost etc. But contemporary laminated 

composite materials exhibit a mismatch of mechanical properties at the layer interface due to bonding 

of two discrete materials. As a result there is a chance of stress concentration and residual stresses at 

the interface [1], which can lead to damage in the form of delamination, matrix cracking and adhesive 

bond separation. Functionally graded materials (FGMs) are free of these disadvantages as material 

properties are obtained as a function of spatial position resulting in a continuous variation from one 

surface to another. The continuous gradation is achieved by combination of two or more constituent 

materials, mixed continuously and functionally according to a given volume fraction. The variation of 

material properties in functionally graded (FG) beams may be oriented in transverse (thickness) 

direction or longitudinal/axial (length) direction or both.  

Various engineering structures are often represented as slender beams resting on elastic foundation. 

These structures can be modelled as beams supported by a series of springs, whose stiffness 

characterises the property of the foundation. Similarly, non-uniform beams, due to their favourable 

strength and mass distribution, find wide application in turbine blades, ship propellers, robot arms, 

helicopter rotor blades, space and marine structures etc. [2] 

An exhaustive literature review of the relevant domain reveals that majority of the studies are 

concentrated on free vibration analysis of uniform beams on elastic foundation with material property 

variation along the depth of the beam. Kodali et al implemented displacement field based on higher 

order shear deformation theory to study the static behavior of functionally graded metal–ceramic 

(FGM) beams under ambient temperature. The material properties of the functionally graded materials 

were assumed to be graded according to power law in the thickness direction [3]. Yaghoobi et al 

carried out the bending analysis of simply supported FG beam [4]. Hajilar et al studied the free 

vibration and stability analysis of axially functionally graded tapered Timoshenko beams through a 
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finite element approach. The effects of taper ratio, elastic constraint, attached mass and material non-

homogeneity on the natural frequencies and critical buckling load were investigated [5]. Rajasekaran 

et al investigated the free vibration and stability of axially functionally graded tapered Euler–Bernoulli 

beams through solving the governing differential equations of motion [6]. Kumar et al [7] and Sarkar 

et al [8] carried out free vibration analysis on axially functionally graded (AFG) tapered slender beams 

under different boundary conditions. Kanani et al [9] investigated the large amplitude free and forced 

vibration of FG beam resting on nonlinear elastic foundation containing shearing layer and cubic 

nonlinearity. Civalek et al [10] investigated the bending response of non-homogenous microbeams 

embedded in an elastic medium based on modified strain gradient elasticity theory in conjunctions 

with various beam theories. Niknam et al [11] made an attempt to obtain a closed form solution for 

both natural frequency and buckling load of non-local FG beams resting on nonlinear elastic 

foundation.  

Literature review reveals that the field of free vibration study of depth-wise functionally graded 

beams is explored quite comprehensively, while analysis of axially functionally graded (AFG) beams 

has gained prominence recently. However, the domain of AFG beam on elastic foundation, which 

incorporates a higher level of complexity, remains largely unexplored. Hence, the present study is 

taken up with the objective of analysing the large amplitude free vibration behaviour of axially 

functionally graded (AFG) linearly tapered beams on elastic foundation. Variation of material 

properties (elastic modulus and density) along the length of the beam is considered according to 

specified functions. The large amplitude free vibration behaviour is presented as backbone curves in 

non-dimensional amplitude-frequency plane, where, variation of natural frequency with the maximum 

amplitude of deflection yields the backbone curve of the system. Effect of variation of system 

geometry (taper parameter) on the dynamic behaviour is also studied. 

2. Mathematical Formulation 

For the present analysis an axially functionally graded non-uniform beam of length L, breadth b and 

variable thickness t(x) is considered (Figure 1). The beam is considered to be resting on an elastic 

foundation, which is idealised as a series of linear springs of stiffness K, attached to the bottom surface 

of the beam. The modulus of elasticity, E(x), and the mass density, ρ(x) of the beam vary along the 

axial direction according to the following functions,  ( )    (   )  ( )    (     
 ), 

where, E0 and ρ0 are the elastic modulus and density at the left hand edge of the beam (Figure 1). For 

the mathematical formulation, normalized coordinate (    ⁄ ) is taken into account. It is assumed 

that the cross-sectional dimensions are sufficiently smaller than the length of the beam to neglect the 

effect of shear deformation and rotary inertia.  

Geometrical nonlinearity is taken into consideration by incorporating nonlinear strain-displacement 

relations. The problem is formulated in such a way that the static solution of the system subjected to 

transverse uniformly distributed load is obtained first, followed by standard eigenvalue problem on the 

basis of known static displacement field. For both static and dynamic analysis, formulation is carried 

out on the basis of variational form of energy principle. As geometric nonlinearity is incorporated in 

the formulation, both bending and stretching effects appear in the expression of strain energy of the 

system. Total strain energy in the system is given by,           , where,    and    are 

strain energy stored in the beam due to bending and stretching, respectively, while,    is strain energy 

of the total strain energy stored in the springs. The final expression of the total strain energy is 

obtained as, 
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The work potential due to external loading is given as,   ∫  ( )   
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2.1. Static analysis 

The energy functionals of the previous segment are expressible in terms of assumed displacement 

fields, w and u, which are considered as linear combinations of unknown coefficients (ci) and 

orthogonal admissible functions (  and  ).  ( )  ∑     
  
   ( ), ( )  ∑        

     
      ( )     (3) 

Applying the principle of minimum total potential energy,  (   )    and substituting the 

expressions for U and V, as well as the assumed displacement fields the governing set of equations are 

derived in matrix form. ,  -, -  * +            (4) 

The form of stiffness matrix and load vector are given by, ,  -  [
      
      

] and * +  

*      +
 . The elements of the stiffness matrix and load vector are, 

,   -  (  
 ⁄ )∑∑∫ (      

 ⁄ )(      
 ⁄ )

 

 

  

   

  

   

 ( ) ( )  

 (    ⁄ )∑∑∫ (∑  (     ⁄ )

  

   

)

 

(     ⁄ )(     ⁄ ) ( ) ( )  
 

 

  

   

  

   

 (  ⁄ )∑∑∫ ( ∑   (        ⁄ )

     

      

)

 

(     ⁄ )(     ⁄ ) ( ) ( )  
 

 

  

   

  

   

   ∑∑∫  ( )
 

 

  

   

  

   

       

,   -    

,   -  (   
 ⁄ ) ∑ ∑∫ (∑  (     ⁄ )

  

   

)

 

(     ⁄ )(        ⁄ ) ( ) ( )  
 

 

  

   

     

      

 

,   -  (  ⁄ ) ∑ ∑ ∫ (        ⁄ )(        ⁄ ) ( ) ( )  
 

 

     

      

     

      

 

*   +   ∑∫  ( )
 

 

  

   

     

*   +    

2.2. Dynamic analysis  

The free vibration problem is formulated on the basis of Hamilton’s principle, which is 

mathematically expressed as,  .∫ (   )  
  
  

/             (5)

 Here, T represents the kinetic energy of the system.   
 

 
∫ * ̇   ̇ + ( ) ( )  
 

 
       (6) 

It should be mentioned here that the springs are taken to be mass less and hence do not contribute 

towards the total kinetic energy of the system. Approximate dynamic displacement fields w  and   are 
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assumed as linear combination of unknown coefficients (  ) and orthogonal admissible functions 

(ϕ  and  ), 

 (   )  ∑     ( ) 
     

     (   )  ∑     ( ) 
        

              (7) 

where, ω is the natural frequency of the system and di represents a new set of unknown coefficients 

that represents the eigenvectors in matrix form. Substituting Equations (1) and (5) along with the 

dynamic displacement fields in Equation (7) gives the governing set of equations for the beam in the 

following form,  

   , -* +  , * +-               (8) 

Here, [M] is mass matrix, which has the following form and elements: , -  [
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Figure 1. Beam on Elastic Foundation.  Figure 2. Comparison of backbone curves for 

fundamental mode of a clamped-clamped 

homogeneous uniform beam. 

3. Results and Discussions  

The objective of the present study is to investigate the large amplitude dynamic behaviour of axially 

functionally graded linear taper beams supported by elastic foundation. Variation of the loaded natural 

frequencies with change in taper parameter and stiffness of the foundation is also investigated. Here, 

the beam under consideration is taken to have uniform width and variation of thickness for the linear 

taper beam is given by the following equation,  ( )    (    ), where,     is the thickness of the 

beam at the left hand edge and   is the taper parameter. For the present analysis, four different values 

of the taper parameter is considered as 0, 0.2, 0.4 and 0.6, respectively. Five values of the stiffness 

parameter (K) are taken as 0 N/m, 1000 N/m, 10000 N/m, 50000 N/m and 100000 N/m. It should be 
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pointed out that the 0 stiffness condition refers to a situation where the springs are absent, i.e., the 

beam is not supported on elastic foundation.  

In the present analysis, it is considered that the AFG taper beam on elastic foundation is subjected 

to uniformly distributed load for CC, CF, SS, SF flexural boundary condition. The in-plane 

displacements at the boundaries are assumed as zero. The displacement fields corresponding to these 

boundary conditions are generated as follows. At first, the start functions for the different situations 

are selected satisfying the flexural boundary conditions for transverse displacement (w) and membrane 

boundary condition for in-plane displacement (u). These start functions are tabulated in Table 1. 

Table 1: Start functions for assume displacement field (w, u) 
Flexural Boundary Condition   ( ) 

CC * (   )+   

CF   (       )  
SS     (  )  
CS   (        )  
In-plane Boundary Condition    ( )  

Immovable  (   ) 

 

Table 2: Values of natural frequencies for 1st and 2nd mode (ω1 and ω2) for different combinations of 

taper parameter and spring stiffness. 

Taper 

Parameter(α) 

Stiffness 

(K) 

N/m 

Material 

CC CF SS CS 

ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 

0 0 24.23 66.91 02.88 22.10 10.73 43.21 15.71 53.46 

1000 24.61 67.05 04.62 22.49 11.55 43.43 16.25 53.64 

10000 27.78 68.31 11.75 25.68 17.22 45.38 20.41 55.18 

50000 38.78 73.66 25.37 36.75 31.75 53.21 33.00 61.60 

100000 49.08 79.88 35.49 47.07 43.21 61.97 43.75 68.85 

0.2 0 21.56 59.73 02.98 20.65 09.66 38.64 14.49 48.18 

1000 22.03 59.90 04.95 21.11 10.65 38.90 15.14 48.39 

10000 25.83 61.43 12.80 24.85 17.17 41.26 20.01 50.25 

50000 38.35 67.84 22.77 37.24 32.94 50.50 33.97 57.83 

100000 49.65 75.13 38.92 48.49 45.20 60.25 45.62 66.16 

0.4 0 18.73 52.09 03.11 19.10 08.50 33.83 13.16 42.57 

1000 19.33 52.31 05.39 19.66 09.75 34.17 13.96 42.83 

10000 24.03 54.25 14.25 24.16 17.31 37.10 19.78 45.17 

50000 38.46 62.18 31.13 38.25 34.61 48.11 35.47 54.37 

100000 50.97 70.88 43.76 50.63 47.93 59.18 48.28 64.08 

0.6 0 15.66 43.73 03.31 17.42 07.17 28.64 11.63 36.43 

1000 16.47 44.04 06.07 18.16 08.83 29.11 12.70 36.80 

10000 22.52 46.68 16.43 23.84 17.78 33.01 19.88 39.93 

50000 39.43 56.99 36.15 40.34 37.03 46.58 37.87 51.60 

100000 53.50 67.71 51.00 54.31 51.81 59.35 52.27 63.23 

 

Gram-Schmidt orthogonalization scheme is used to generate the higher order functions and the 

number of functions is taken as 8 for each displacement. The same method can be utilized to handle 

non-classical boundary conditions like elastically restrained ends. However, to limit the volume of the 

present paper, only results pertaining to CC, CF, SS, SF boundaries are furnished on a beam on elastic 

foundation. A material model where the elastic modulus and density vary along the axial direction is 

considered and the expressions for these two parameters as function of the normalized axial coordinate 

are given as follows,  ( )    (   )  ( )    (     
 ). However, the present formulation 
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and solution methodology is such that any other material model expressible as a mathematical function 

of the normalised axial coordinate can be handled. 

 

 
 

 
 

Figure 3. Backbone curve of AFG linear taper beam on elastic foundation with CC 

boundary condition.  

 

 
Continued 
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Figure 4. Backbone curve of AFG linear taper beam on elastic foundation with CF 

boundary condition.  

 

 

 

 

Figure 5. Backbone curve of AFG linear taper beam on elastic foundation with SS 

boundary condition. 
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Figure 6. Backbone curve of AFG linear taper beam on elastic foundation with CS 

boundary condition. 

 

The present analysis is based on a methodology where the solution of the static displacement field 

of the AFG beam on elastic foundation under uniformly distributed transverse loading is obtained 

followed by subsequent evaluation of the eigenvalues of the corresponding dynamic problem on the 

basis of converged static solution. The solution methodology of the static problem involves an 

iterative numerical scheme using successive relaxation due to presence of nonlinearity in the stiffness 

matrix. The number of Gauss points to be used for generation of results is taken as 24. The solution of 

the dynamic problem is obtained using Matlab subroutines. Following geometrical dimensions and 

material properties are used to generate the results: L = 1.0 m, b = 0.05 m, t0 = 0.02 m, E0 = 210 GPa, 

ρ0 = 7850 kg/m3. 

Validation for the present formulation and solution technique is done by comparison with 

established results already available in literature. The backbone curve for fundamental mode of a 

clamped-clamped (CC) homogeneous uniform beam is compared with the results published by Gupta 

et al. [12] and the comparative plot is furnished in Figure 2. It can be seen from the figure that the 

matching of the two sets of results is satisfactory.  

The fundamental frequencies for different parameters and different conditions are shown in Table 

2. It is observed that for all the cases with the increase in taper parameter the natural frequency 

decreases. This decrement of frequency is due to the softening effect introduced by the decrease in 

cross-sectional area and moment of inertia. It is also observed that for all the cases with the increase in 
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stiffness of the foundation the natural frequency increase as stiffer foundation makes the system more 

rigid. 

It is well known that backbone curves of a vibratory system provide information about the relation 

of natural frequency and amplitude. In the present paper, large amplitude dynamic behaviour of the 

system is presented as backbone curves for the first mode in non-dimensional frequency amplitude 

plane, where the ordinate is dimensionless amplitude (wmax/t0) and abscissa is normalized frequency 

(ωnl/ωl). In the present study (wmax/t0) is taken as 2.0 for all cases. Figures 3-6 presents the backbone 

curves for axially FG tapered beams under uniformly distributed transverse loading for different 

combinations of taper patterns, stiffness variations, as well as boundary conditions. For all the cases, 

stiffness of the beam increases with increasing load due to geometric nonlinearity present in the 

system. This increased stiffness causes the increase in free vibration frequencies with increase in the 

deflection of the beam, as can be observed from any of the figures. So, hardening type nonlinear 

behaviour is exhibited by the system for all combinations of taper profile, stiffness values and 

boundary conditions. 

4. Conclusions 

In the present analysis, large amplitude responses of axially functionally graded slender taper beam 

with linear taper profile are investigated. The beam is further assumed to be on elastic foundation, 

modelled as a series of linear springs with specified spring stiffness. The beam is under the action of 

uniformly distributed transverse load, while four different flexural boundary conditions (CC, CS, SS 

and CF) are considered. However the present methodology can be applied for other type of classical 

and non-classical boundary as well. Also the methodology is flexible enough to account for other type 

of material gradation and taper pattern. Energy principle is applied for the mathematical formulation 

and the problem is solved in two parts, static and dynamic, respectively. First the static problem is 

solved for unknown static displacement fields and subsequently the dynamic problem is taken up 

based on those known displacement fields. For the static problem minimum total potential energy 

principle is utilized whereas for dynamic analysis the formulation is based on Hamilton’s principle. 

The obtained results are validated from previously published results and were found to be in good 

agreement. Results pertaining to various boundary conditions, taper parameter and spring stiffness are 

furnished as backbone curve for the fundamental mode. For all combinations of the system parameters 

hardening type of nonlinearity is observed. 
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