M.TECH/RE/1ST SEM/REEN 5104/2017

MATERIALS FOR ENERGY CONVERSION SYSTEMS (REEN 5104)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

Any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: **10 × 1=10**
 - (i) The nonlinear optical properties of carbon nanotubes depend strongly on the
 (a) diameter of the tube
 (b) polarization of incident radiation
 (c) symmetry of the tube
 - (d) both (a) & (c).
 - (ii) The absorption coefficient increases rapidly for (a) $\lambda < 1.24/Eg$ (b) $\lambda=1.24/Eg$ (c) $\lambda > 1.24/Eg$ (d) None of the above.
 - (iii) Shading effect can be reduced by
 (a) choosing optimum metal thickness
 (b) choosing optimum height to -width ratio.
 (c) reducing carrier lifetime
 - (d) both.
 - (iv) Influence of intrinsic amorphous Si layer provides(a) poor surface passivation(b) good surface passivation
 - (c) extremely poor surface passivation
 - (d) extremely good surface passivation.

(v) Staebler - Wronski effect depends on the

- (a) thickness of the i-layer
- (b) doping concentration of i-layer
- (c) magnitude of electric field
- (d) wavelength of incident light.

M.TECH/RE/1st SEM/REEN 5104/2017

(d) None of these.

- (vi) The most commonly used etchants for silicon are

 (a) mixture of HNO₃ & HF in DI water
 (b) mixture of HNO₃ & HF in H₂SO₄
 (c) mixture of CaCO₃ & HNO₃ in DI water
 (d) none of these.

 (vii) Standard Clean room temperature is

 (a) 22 +/- 5° C
 (b) 32° C +/- 2° C
 (c) 50 +/- 2° C
 (d) 20° C +/- 5°C.

 (viii) Full form of CVD

 (a) Cubic Volume Density
 (b) Chemical Vapour Deposition
 (c) Coating Volume Deposition
- (ix) The typical office building air contains-----numbers of particles (0.5 micron) per cubic feet
 (a) 5 lac to 10 lac
 (b) 10 billions
 (c) 10000
 (d) 50000.
- (x) Homoepitaxy means
 (a) growth of silicon in silicon
 (b) growth of silicon in air
 (c) reduction of silicon layer
 (d) none of these.

Group - B

- 2. (a) Identify the contaminants that affect
 (i) Minority Carrier life time
 (ii) Oxide leakage
 (iii) function breakdown and bipolar gain.
 - (b) Why is Photolithography preferred to be done in a "Class-10" clean room and in yellow light?

(3+3+3)+3=12

- 3. (a) Write the application of PECVD and Epitaxial growth in solar cell fabrication. Discuss- "solid-state materials are the alternatives of dye sensitized solar cells".
 - (b) What is dark current? Discuss.

(2+2+5)+3=12

REEN 5104

2

Group - C

- 4 (a) Distinguish the principle of operation of solar cell and photodetector. Explain the significance of Fill factor.
 - (b) The absorption coefficients of Si for wavelength λ =1.0µm and λ =0.5µm are 10² cm⁻¹ and 10⁴ cm⁻¹ respectively. Calculate the thickness of a semiconductor that absorbs 90% of the incident photon energy.

(6+3)+3=12

- 5 (a) Describe the tandem and parallel configurations of multi-junction solar cells. Discuss the pros and cons to be addressed for optimal coverage of solar spectrum and good performance of tandem solar cell.
 - (b) Why is the tandem solar cell advantageous over the single junction solar cell?

(4+6) + 2 = 12

Group - D

- 6. (a) Draw the flow diagram for the production of amorphous Si solar cells / module.
 - (b) Briefly discuss the features of the components of the above module. 6+6=12
- 7. (a) Explain Chiral vector and chiral angle. Why are carbon nanotube based solar cells more advantageous than Dye-sensitized solar cells?
 - (b) Discuss few optimization strategies of carbon nanotube based solar cell design.

$$(4+4)+4=12$$

Group - E

- 8. (a) Discuss about the flexible and organic solar cells.
 - (b) What is Perovskite material? Write the advantages of using Perovskite material in solar cells.

$$(3+3) + (2+4) = 12$$

- 9. (a) Explain the principle of operation of DSSC solar cell.
 - (b) What is Dark current? Why is T_iO_2 mostly used in Dyesensitized solar cells?

6 + (2 + 4) = 12

REEN 5104

3