B.TECH/IT/4TH SEM/MATH 2203/2018

GRAPH THEORY AND ALGEBRAIC STRUCTURES (MATH 2203)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) In the additive group $(\mathbb{R}, +)$, $(9.1)^0 =$ (a) 1 (b) 0 (c) -1 (d) 9.1.
 - (ii) The chromatic polynomial of the complete graph K_4 is (a) $x^4 - x^3$ (b) $x(x-1)^3$ (c) $x^4 - 6x^3 + 11x^2 - 5x$ (d) $x^4 - 6x^3 + 11x^2 - 6x$
 - (iii) If a cyclic group G contains 8 distinct elements then the number of its generators is

(a) 1 (b) 2 (c) 3 (d) 8.

- (iv) Which one of the following is not an integral domain?
 - (a) The set of all even numbers under addition and multiplication
 - (b) \mathbb{R} under addition and multiplication
 - (c) C under addition and multiplication
 - (d) The set of all 2×2 matrices under matrix addition and multiplication.
- (v) Which of the following group is not cyclic?

	~ ~	-	-	
(a) (ℤ, +)				(b) $(\{2n: n \in \mathbb{Z}\}, +)$
(c) (ℚ,+)				(d) (ℤ _n , +)

- (vi) Which one of the following sets is closed under multiplication? (a) $\{1, -1, 0, 2\}$ (b) $\{1, i\}$ (c) $\{1, \omega, \omega^2\}$ (d) $\{\omega, 1\}$.
- (vii) Let G be a planar graph and G^* be its dual. The number of vertices of G^* is same as the

(a) number of vertices of G	(b) number of edges of G
(c) number of regions of C	(d) number of regions of (

(c) number of regions of G (d) number of regions of G

MATH 2203

1

B.TECH/IT/4TH SEM/MATH 2203/2018

(viii)	Z₆ under addition and n(a) a non-commutative(c) a field	lo 6 is (b) an integral domain (d) none of (a), (b), (c).			
(ix)	The inverse permutation (a) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$	m of $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ is	(b) $\begin{pmatrix} 1 & 2 \\ 4 & 3 \\ (d) \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$	$\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 4 \\ 2 & 4 \end{pmatrix}$.	
(x)	The number of element (a) 120 (s in the symmetric g b) 24	roup S ₅ is (c) 5		(d) 15

Group – B

- 2. (a) Prove the following theorem: The chromatic number of C_n , a cycle with n vertices, is (i) **2** if n is even and (ii) **3** if n is odd.
 - (b) State Kuratowski's Theorem. Let e denote an edge of the complete bipartite graph $K_{6,6}$. Is $K_{6,6} e$ a planar graph? Justify.

6 + 6 = 12

- 3. (a) Prove that the chromatic polynomial of a graph is a polynomial.
 - (b) In an examination seven subjects are to be scheduled: S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7 . The following pairs of subjects have common students: (S_1 , S_2), (S_1 , S_3), (S_1 , S_4), (S_1 , S_7), (S_2 , S_3), (S_2 , S_4), (S_2 , S_5), (S_2 , S_7), (S_3 , S_4), (S_3 , S_6), (S_3 , S_7), (S_4 , S_5), (S_4 , S_6), (S_5 , S_6), (S_5 , S_7), (S_6 , S_7) How can the examination be scheduled so that no student has more than one examination on the same day. Show your work in detail. 5 + 7 = 12

Group – C

- 4. (a) Show that the set $G = \{(a + b\sqrt{2}) : a, b \in \mathbb{Q}\}$ is a group with respect to addition, where \mathbb{Q} denotes the set of rationals.
 - (b) Show that if every element of a group (G,*) be its own inverse, then it is an abelian group.
 - (c) Determine whether * defined as follows in each of the following cases is a binary operation or not:
 (i) On Z⁺, a * b = a^b
 (ii) On Q , a * b = ab + 3.

 $L^{+}, a * b = a^{b}$ (ii) On Q, a * b = ab + 3. 4 + 4 + (2 + 2) = 12

2

B.TECH/IT/4TH SEM/MATH 2203/2018

- 5. (a) Give an example of binary operation with suitable explanation for each of the following cases:(i) non-associative (ii) non-commutative.
 - (b) Write down the multiplicative Cayley Table for U(8).
 - (c) Let *G* be group. If $a, b \in G$, then prove that $(ab)^{\cdot 1} = b^{\cdot 1}a^{\cdot 1}$.
 - (d) Give two examples of finite groups of order at least 4.

(2+2)+3+3+(1+1)=12

Group – D

- 6. (a) Prove that the necessary and sufficient condition for a non-empty subset *H* of a group (*G*, \circ) to be a subgroup is for all *a*, $b \in H$, $a \circ b^{-1} \in H$.
 - (b) Let *H* be a subgroup of a group *G* such that [*G*:*H*]=2. Then prove that *H* is a normal subgroup of *G*.

6 + 6 = 12

- 7. (a) State and prove Lagrange's Theorem regarding the order of a subgroup of a finite group.
 - (b) Prove that any two left cosets of H in a group G have the same cardinality.

6 + 6 = 12

Group – E

- 8. (a) Let *d* be an integer which is not a square. Prove that $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$ is an integral domain.
 - (b) Prove that a finite integral domain is a field.

5 + 7 = 12

- 9. (a) Determine the smallest subring of \mathbb{Q} that contains $\frac{1}{2}$. (That is, find the subring *S* with the property that *S* contains $\frac{1}{2}$ and if *T* is any subring containing $\frac{1}{2}$ then *T* contains *S*.) Show your work.
 - (b) Prove that the set of Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is a subring of the set of all complex numbers \mathbb{C} under addition and multiplication of complex numbers.
 - (i) Does $\mathbb{Z}[i]$ contain the multiplicative inverse of *i* ? Justify.
 - (ii) Does $\mathbb{Z}[i]$ contain the multiplicative inverse of 1 + i? Justify.

6 + 6 = 12

3