B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2ND SEM/MATH 1201/2018

MATHEMATICS II (MATH 1201)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The order, degree and linearity of the differential equation $x^{3} \frac{d^{2}y}{dx^{2}} + \cos x \frac{dy}{dx} + (\sin x)y = 0$ are respectively (a) 2, 1, linear (c) 1, 2, linear (d) 1, 2, non-linear.
 - (ii) Integrating factor of $\frac{dy}{dx} + y \cot x = 2x \cos x$ is (a) $\cos x$ (b) $\sin x$ (c) $-\sin x$ (d) none of these.
 - (iii) Let A=(1,3,5), B=(6,4,3), C=(-2,-1,4) and D=(0,1,5). The projection of AB on CD is

(a) $-\frac{10}{3}$ (b) $\frac{10}{3}$ (c) $\frac{10}{6}$ (d) $\frac{5}{3}$

(iv) The equation of the plane passing through (1, 2, 3) and parallel to 2x+3y-z+5=0 is

(a) 2x + 3y - z + 7 = 0(b) 2x + 3y - z + 5 = 0(c) 2x + 3y - z - 5 = 0(d) x + y + z + 5 = 0

- (v) A vertex of a tree is a cut vertex if its degree is
 (a) greater than 1
 (b) greater than 2
 (c) equal to 1
 (d) equal to 2.
- (vi) In a connected simple graph with 8 vertices and e edges(a) $7 \le e \le 26$ (b) $6 \le e \le 28$ (c) $7 \le e \le \infty$ (d) $7 \le e \le 28$

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/2ND SEM/MATH 1201/2018

(vii) If
$$L\left\{\frac{\sin t}{t}\right\} = tan^{-1} \left(\frac{1}{s}\right)$$
, then $L\left\{\frac{\sin at}{t}\right\} =$
(a) $tan^{-1} \left(\frac{1}{s^2}\right)$ (b) $tan^{-1} \left(\frac{a}{s}\right)$
(c) $tan^{-1} \left(\frac{1}{as}\right)$ (d) $tan^{-1} \left(\frac{1}{s^2 + a^2}\right)$

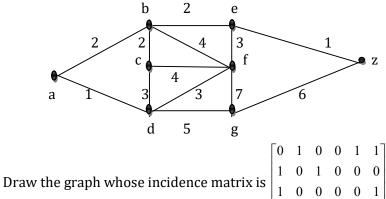
(viii)
$$L\{e^{-2t}\cos t\}$$
 is
(a) $\frac{s+2}{s^2+4s+5}$
(b) $\frac{s}{s^2+4s+5}$
(c) $\frac{s+1}{s^2+4s+1}$
(d) $\frac{s+3}{s^2+4s+5}$

(ix) The value of
$$\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{5}{2}\right)$$
 is
(a) $\frac{3\sqrt{\pi}}{4}$ (b) $\frac{3\pi}{2}$ (c) $\frac{3\pi}{4}$ (d) $\frac{\pi}{2}$

(x) A line on the *xy*-plane makes an angle 30° with *x*-axis. Then the direction cosine of this line are (a) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$ (b) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$ (c) $\left(\frac{\sqrt{3}}{2}, 0, \frac{1}{2}\right)$ (d) $\left(0, \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

Group – B

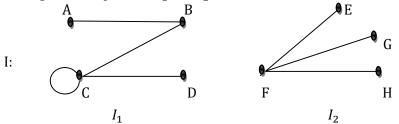
- 2. (a) Find the integrating factor of the following equation: $(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y - x^2y^2 - 3x)dy = 0$
 - (b) Find general and singular solution of the following differential equation: $p = \cos(y - px)$, $p \equiv \frac{dy}{dx}$
 - (c) Solve $\frac{dy}{dx} = y \tan x y^2 \sec x$.

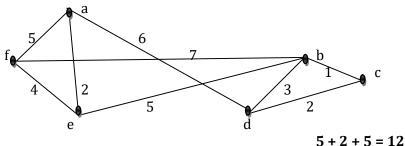

2 + 5 + 5 = 12

- 3. (a) Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 3\sin x + 4\cos x$, y(0) = 1, and y'(0) = 0 using D operator method.
 - (b) Solve by the method of variation of parameters. $(D^2 2D + 1)y = e^x \log x$, where $D \equiv \frac{d}{dx}$.

2

Group – C


Find the shortest path between a to z by Dijkstra's algorithm. 4. (a)


- (b) 0 1 1 1 1 0 0 0 0 1 0 0
- Does the graph with the given degree sequence exist? Justify your (c) answer. {6, 6, 6, 4, 3, 2}.

6 + 4 + 2 = 12

- 5. Prove that any tree with two or more vertices contains at least two pendant vertices. (a)
 - Construct the adjacency matrix of the following disconnected graph, (b) having two components I_1 and I_2 ,

Find the minimal spanning tree of the following graph by Prim's algorithm. (c)

Group - D

- (a) Show that $\int_0^\infty \frac{dx}{(x+1)(x+2)} = \log 2.$ 6.
 - Assuming $\Gamma(m)\Gamma(1-m) = \pi \csc(m\pi), 0 < m < 1$, (b) show that $\Gamma\left(\frac{1}{9}\right).\Gamma\left(\frac{2}{9}\right)....\Gamma\left(\frac{8}{9}\right) = \frac{16}{3}\pi^4$ (c) Evaluate: $\int_{-1}^{1} \frac{\sqrt{1+x}}{\sqrt{1-x}} dx$, if it exists. 3 + 4 + 5 = 12

7. (a) Evaluate
$$L^{-1}\left\{\tan^{-1}\frac{2}{s^2}\right\}$$
.

Solve the following differential equation, using Laplace transform (b) method: $y''(t) + y(t) = 8 \cos t$, where y(0) = 1, y'(0) = -1. 6 + 6 = 12

Group - E

- 8. (a) If a line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.
 - Find the coordinates of the foot of the perpendicular drawn from the (b)origin to the plane x + 4y - 6z + 1 = 0. Find the equation of the straight line joining the origin and the foot of the perpendicular.

6 + 6 = 12

- Find the equation of the projection of the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-4}{4}$ on the 9. (a) plane x + 3y + z + 5 = 0.
 - Find the equation of the plane which contains the line of intersection (b) of the planes x + y + z - 6 = 0 and 2x + 3y + z + 5 = 0 and perpendicular to the xy-plane.

6 + 6 = 12

3