B.TECH/ME/6TH SEM/MECH 3262/2018

RENEWABLE ENERGY SYSTEMS (MECH 3262)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Regenerative Rankine cycle thermal efficiency is
 - (a) same as simple Rankine cycle thermal efficiency
 - (b) always less than simple Rankine cycle thermal efficiency
 - (c) always greater than that of simple Rankine cycle thermal efficiency(d) none of the above.
 - (ii) The turbine used in a tidal range plant is
 (a) Pelton turbine
 (b) Francis turbine
 (c) Kaplan turbine
 (d) Propeller turbine.
 - (iii) For 1 *degree* change in longitude, the change in solar time
 - (a) 4 minutes (b) 4 seconds
 - (c) 1 minute (d) 1 hour.
 - (iv) Use of booster mirrors with a flat plate collector
 - (a) increases the reflection to the atmosphere
 - (b) increases the diffused radiation component on the absorber
 - (c) decreases the reflection to the atmosphere
 - (d) increases the beam radiation component on the absorber.
 - (v) Compactness of a flywheel storage
 - (a) leads to storage of only a small amount of energy
 - (b) makes its handling difficult
 - (c) enables a portable energy storage medium
 - (d) none of the above.
 - (vi) The most important advantage of a solar furnace is
 - (a) cheap low-grade heating
 - (b) availability of both heat and light

1

B.TECH/ME/6TH SEM/MECH 3262/2018

- (c) heating without contamination and in absence of electromagnetic field
- (d) heating available throughout the day.
- (vii) Cut-in speed for a wind turbine is
 - (a) the minimum wind speed at which the turbine is designed to come into operation
 - (b) the maximum wind speed at which the turbine is designed to come into operation
 - (c) the wind speed at which the turbine stops functioning
 - (d) the rotor speed

(viii) The energy flux in waves is

- (a) less than that in wind energy
- (b) more than that in wind energy but less than solar energy
- (c) more than that in wind energy
- (d) comparable to that in wind energy.
- (ix) Compared to a conventional steam power plant, the efficiency of a geothermal plant is(a) higher(b) comparable

(a) higher	(b) comparable
(c) lower	(d) same.

 $\begin{array}{ll} \text{(x)} & \text{Heating value of producer gas is in the range of} \\ & (a) \ 4-8 \ \text{MJ/m}^3 & (b) \ 14-18 \ \text{MJ/m}^3 \\ & (c) \ 24-28 \ \text{MJ/m}^3 & (d) \ 34-38 \ \text{MJ/m}^3. \end{array}$

Group – B

- 2. (a) There are two alternative sources of heat energy. Source 1 can supply energy at the rate of 12,000 kJ/min at 340°C. Source 2 can supply energy at the rate of 140,000 kJ/min at 75°C. The temperature of the surroundings is 35°C. If an ideal reversible engine is used to harness power from each of these sources, then which source will provide larger power? What conclusions do you draw?
 - (b) What do you understand by energy conservation? State and explain the three important aspects of energy conservation.

(4+1) + (1+6) = 12

- 3. (a) Define energy yield ratio. What is meant by commercial and noncommercial energy resource?
 - (b) An industry requires 20 MW electrical power and 40 MW process heat for production. There are two alternative options: (i) use a cogeneration unit having an overall efficiency of 65%, or (ii) use two

separate units for electrical and thermal outputs. The efficiencies of electrical and thermal power units are 25% and 80% respectively. Which option would be preferable on the basis of the overall efficiencies in each case?

(1+2+2)+7=12

Group – C

4. (a) Define the following terms:

(i) Hour angle (ii) Solar azimuth angle

- ii) Solar azimuti angle
- (iii) Angle of incidence.
- (b) Define concentration ratio of a solar collector. Name three collectors requiring one-axis sun tracking.

(2+2+2) + (3+3) = 12

- 5. (a) Compare the relative merits and demerits of LiBr-water and aquaammonia vapour absorption cooling systems.
 - (b) What is the purpose of double-layer of glazing in a greenhouse?
 - (c) What is the advantage of using a glass cover in a box-type solar cooker?

6 + 3 + 3 = 12

Group – D

- 6. (a) Describe the basic components of wind energy conversion systems.
 - (b) A *PV* system feeds a *DC* motor to produce 2 *hp* power at the shaft. The motor efficiency is 85%. Each module has 36 multi-crystalline silicon solar cells arranged in 9×4 matrix. The cell size is $125mm \times 125mm$ and the cell efficiency is 15%. Calculate the number of modules required in the solar *PV* array. Assume global radiation incident normally to the panel as $1.5 \ kW/m^2$.

6 + 6 = 12

- 7. (a) Explain the principles of design and selection of hydraulic turbines.
 - (b) Discuss on mini-hydel power advantages and disadvantages.

8 + 4 = 12

Group – E

8. (a) Briefly discuss the origin and nature of tidal energy.

MECH 3262

3

В.ТЕСН/МЕ/6^{тн} SEM/MECH 3262/2018

(b) Calculate the volume of a cow-dung based biogas plant required for cooking needs of a family of 7 adults, and lighting needs with 5 numbers of 100 CP lamps for 3 hours daily. The biogas required for cooking is about 0.228 $m^3/person/day$. The gas required for lighting one 100 CP lamp is 0.126 $m^3/hour$. Assuming that a single cow yields 10 kg of dung per day, and the dung that can be collected is 80% of the yield, calculate the required number of cows to feed the plant. The percentage weight of dry solid mass in the dung is 21% and the gas yield is 0.36 m^3 per kg of dry matter. Assume that the digester slurry is made by mixing with equal quantity of water, and a 60-day retention time is necessary. Taking the volume percentage of slurry in the digester as 90%, and the slurry density as 1090 kg/m^3 , calculate the volume of the digester.

6 + (3 + 3) = 12

- 9. (a) Explain different types of geothermal resources.
 - (b) What are the main advantages and disadvantages of ocean wave energy?

4

8 + 4 = 12

MECH 3262