B.TECH/AEIE/ECE/8TH SEM/CSEN 4281/2018

FUNDAMENTALS OF RDBMS (CSEN 4281)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1.	Choose	e the correct alternative for	the following:	$10 \times 1 = 10$
	(i)	where A is the candidate k	key of R1. So, th	to R1(A,B) and R2(A,C,D), e decomposition is d(b) (d) none of these.
	(ii)	In relational algebra, (a) project (b) rename		
	(iii)	A set of one or more a uniquely identify an entity (a) super key (c) candidate key		se no propers ubset can et is called (b) primary key (d) foreign key.
	(iv)	A trivial FD is (a) A→ BC (c)A→C	(b) AB → A (d) none of the	above.
	(v)			BC}.Out of this the minimal
	(vi)	TCL statements are (a) grant and revoke (c) commit, rollback and s	avepoint	(b) commit and rollback(d) none.
	(vii)	In ACID property, the letter (a) commitment (c) concurrency	er "C" stands de	motes (b) consistency (d) collective.

B.TECH/AEIE/ECE/8TH SEM/CSEN 4281/2018

- (viii) Which of the following is the way to **undo** the effects of an aborted transaction?
 - (a) Compensation transaction

(b)Roll back

(c) Recovery

(d)Error control.

- (ix) Which of the following operations is used if we are interested in only certain columns of a table?
 - (a) PROJECTION

(b) SELECTION

(c) UNION

(d) JOIN.

- (x) In a relational model, **relations** are termed as
 - (a) tuples
- (b) attributes
- (c) tables

(d) rows.

Group - B

- 2. (a) Describe the **3-schema architecture** for database development along with an illustrative diagram. Clearly mention the functionalities of each level.
 - (b) Explain **logical data independence** and **physical data independence** with the help of examples.
 - (c) State what is meant by **DDL**, **DML**, **DCL**. Give an example for each.

5 + 4 + 3 = 12

SCENARIO

Consider two shopping sites "*FLIPON*" and "*AMKART*" who maintain records of different products and customers.

- Each PRODUCT can be distinctly identified by (manufacturer_name, product_name, variant) ORproduct_id, all products have a price, discount, category and specification.
- Any product may be sold by one or more **SELLERS**. Each seller may be identified by **seller_id**. Each seller has a *name*, *location*, *address* and *contact_information*. A seller may sell one or more products.
- ➤ For each product sold a seller receives some commission.
- Each product has a set of **REVIEWS**. Reviews are left by customers. Each review has a *heading*, *description*, and *rating*.
- Each review can be distinctly identified by (product_id, customer_id).
- For each product bought a customer may leave at the most one review.
- > Each **CUSTOMER**can be identified by *registered_phone* OR *registered_mail* id OR *customer id*.
- **Each customer has a set of ORDER_RECORDS, WALLET and a CART.**
- ➤ Each order is identified by order_id. Each order has details of products purchased, quantity of each product, price of each product, total amount of the order, cancelled date, modified date, and delivery date. [Cancel Date or modify date cannot be later than delivery date].

3.

B.TECH/AEIE/ECE/8TH SEM/CSEN 4281/2018

- Each cart belongs to one and only one customer. Cart has a *list of products*, *quantity of each product*, *price of each product* and *total amount*.
- > The wallet may be identified by the *customer_id*. Each wallet has record of *top_up_added*, *payment_for_order_id* and *refund_for_order_id*, *refund_status*, *refund_date*, *refund_amount*.
- (a) Draw a clean and precise **ER diagram** to model the scenario given above. You may assume any additional conditions if you think necessary. State such assumptions clearly. Provide brief explanations for your diagram.
- (b) Differentiate between **candidate key** and **super key** with proper reasons. Give an illustrative example of each from the above scenarios.

10 + 2 = 12

Group - C

4. (a) Considering the scenario given in *question 3*:

Write **relational algebra** (Not SQL) expressions for the following:

- ➤ Identify which product from "electronics" category has the highest number of units sold on AMKART.
- ➤ List out the names of customers of *FLIPON*who have cancelled or modified their orders more than "10" times.

Suggest some technique to identify which products are sold on both *FLIPON* and *AMKART*. State your assumptions clearly. [Hint: comparing some attribute values in two different tables]

(b) Based on your assumptions, write relational algebra expression to find out which platform offers any particular product at a lower price.

(3+3)+(3+3)=12

5.(a) Consider a relational database as given below:

Train (<u>train-no</u>, train_name, start_station)

Berth_Seat(<u>SeatNo, train-no, coach type</u>, price_perKm) where the underlined attributes are the primary keys. Write down the expressions in SQL for the following queries:

- i) List all the train names starting from source station "Kolkata.
- ii) List the train number and price of a seat under "SL" type of coach for those train originating from "Howrah" Station and terminating at "Delhi".
- iii) Display the train name whose price/km under "3AC" type of coach is maximum.
- (b) Distinguish the terms referential integrity, entity integrity and domain integrity with examples.

(2+3+3)+4=12

B.TECH/AEIE/ECE/8TH SEM/CSEN 4281/2018

Group - D

6. A relation R (X, P, C, T, G) with attributes is given.

The given set of Functional Dependencies denoted as ${\bf F}$ are as follows:

 $X \rightarrow P$ $C \rightarrow T$

 $(X, P) \rightarrow G$

T→G

- i) Find out the candidate keys from of R.
- ii) Find the minimal cover of **F**.
- iii) Determine the current normal form of the relation R.
- iv) Convert the relation to 3rd normal form such that dependency is preserved and lossless decomposition occurs explain the steps.

3+3+3+3=12

7. (a) Define **BCNF**. How does it differ from 3NF and why is it considered a stronger from 3NF?

Consider the following relation **REFRIGERATOR** (MdlNo, Year, Price, Man_plant, Color) and with the following dependencies:

 $F = \{MdlNo \rightarrow Man_plant,$

(MdlNo,Year) → Price,

Man_plant →Color}

- i) Evaluate each of the following as a candidate key for REFRIGERATOR, giving reasons why it can or cannot be a key: {MdlNo, {MdlNo,Year}, {MdlNo, Color}
- ii) Based on the above key determination, state whether this relation is in BCNF or in 3NF,giving proper reasons.
- (b) Discuss various insert anomalies based on normalization.

3 + 5 + 4 = 12

Group - E

8. (a) Consider 2 transaction T1 and T2 running in a centralized environment such that

T1: R1(A) W1(A) R1(B) W1(B)

T2: R2(A) W2(A) R2(C) W2(C)

Consider the schedule

- S: R1(A) W1(A) R2(A) W2(A) R1(B) W1(B) R2(C) W2(C)
- i) Find out whether the given schedule is conflict serializable or not
- ii) Find whether the given schedule is view serializable or not.
- (b) i) Two phase locking does not ensure freedom from deadlock justify this using an example. ii) Briefly explain wait-wound protocol for deadlock prevention.

(3+3)+(4+2)=12

B.TECH/AEIE/ECE/8TH SEM/CSEN 4281/2018

9. (a) Draw the **Precedence Graph** for the following schedule.

Test whether the given schedule is Conflict Serializable or not.

If it is Conflict Serializable, then write down the equivalent Serial schedule.

uic.		
T ₁	T ₂	T_3
		R(y) R(z)
		R(z)
R(x) $W(x)$		
<i>W(x)</i>		
		W(y)
		W(y) W(y)
	R(z)	
R(y)		
R(y) W(y)		
	<i>R(y)</i>	
	R(y) W(y) R(x) W(x)	
	R(x)	
	W(x)	

- (b) Describe the concurrency problems **Dirty-Read** and **Non-Repeatable Read** with the help of examples.
- (c) Explain **ACID** properties of a transaction.

4 + 4 + 4 = 12