B.TECH/EE/6TH SEM/ELEC 3202/2018

POWER ELECTRONICS (ELEC 3202)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The maximum firing angle that can be obtained by a pure resistive trigger circuit used in phase control circuit is
 (a) 45°
 (b) 90°
 (c) 135°
 (d) 180°.
 - (ii) Which of the following semiconductor power device out of the following is not a current triggered device?
 (a) SCR
 (b) GTO
 (c) TRIAC
 (d) MOSFET.
 - (iii) RC snubber circuit is used to limit
 - (a) rate of rise of current in SCR
 - (b) rate of rise of voltage across SCR
 - (c) conduction period
 - (d) all of these.
 - (iv) A single-phase full bridge voltage source inverter has highly inductive load. For a constant source, the load current is

(a) square wave	(b) triangular wave
(c) sine wave	(d) pulse wave.

- (v) A single-phase full converter can operate in
 (a) 4 quadrants
 (b) 3 quadrants
 (c) 2 quadrants
 (d) 1 quadrants.
- (vi) Natural commutation can be used in

 (a) DC circuits only
 (b) AC circuits only
 (c) both AC and DC circuits
 (d) none of these.

B.TECH/EE/6TH SEM/ELEC 3202/2018

- (vii) Cycloconverter converts
 - (a) AC voltage to DC voltage
 - (b) DC voltage to AC voltage
 - (c) AC voltage to AC voltage at same frequency
 - (d) AC voltage at supply frequency to AC voltage at load frequency.
- (viii) The advantage of 180° conduction mode of 3-phase inverter circuit over 120° conduction mode is that
 (a) it needs less number of switches
 - (a) It needs less number of switches
 - (b) there is no paralleling of switches
 - (c) devices in series are not simultaneously switched
 - (d) load terminals are not left open during switching.
- (ix) Commutation overlap in the phase controlled AC to DC converters is due to
 - (a) load inductance
 - (b) harmonic content of load current
 - (c) switching operation in the converter
 - (d) source inductance.
- (x) For an SCR, di/dt protection is achieved through the use of
 (a) R in series with SCR
 (b) RL in series with SCR
 (c) L in series with SCR
 (d) L across SCR.

Group – B

- 2. (a) Write in detail about the basic structure of power diode. Also explain its reverse recovery characteristics.
 - (b) Describe in detail the RC triggering circuit for firing SCR.
 - (c) Define latching current and holding current of a thyristor.

6 + 5 + 1 = 12

- 3. (a) A diode has a reverse recovery time of 2.5ms. If di/dt is 35 A/ms, Find the (i) stored charge Qrr (ii) peak reverse current I_{rr} .
 - (b) Draw the V-I characteristics of an SCR and point out (i) forward breakover voltage, (ii) reverse breakdown voltage, (iii) latching current, (iv) holding current.
 - (c) Explain in detail Class B commutation of thyristor, with necessary circuit diagram and waveform.

(2+2)+1+7=12

2

Group – E

- 8. (a) A single-phase bridge type cycloconverter has input voltage of 230V, 50Hz and a load of $R = 10\Omega$. Output frequency is $1/3^{rd}$ input frequency. For a firing angle delay of 30° , calculate:
 - (i) RMS value of output voltage
 - (ii) RMS current of each thyristor
 - (iii) RMS current of each converter
 - (iv) input power factor.
 - (b) Explain the operation of single-phase half-wave AC voltage controller for R load, along with necessary circuit diagram and relevant waveforms.

(2+2+1+1)+6=12

- 9. (a) Explain in detail the operation of a single-phase to single-phase stepup mid point type cycloconverter.
 - (b) Explain in detail the working principle of a switch mode power supply.
 - (c) Define integral cycle control.

5 + 5 + 2 = 12

Group – C

- 4. (a) Describe the operation of a full wave mid-point converter for R-L load with necessary equations and waveforms. Consider discontinuous mode of operation.
 - (b) A DC battery is charged through a resistor. Derive an expression of the average value of charging current in terms of Vm, E and R on the assumption that SCR is fired continuously. For an AC source voltage of 230V, 50 Hz, find the value of average charging current for $R = 8\Omega$ and E = 150V. Also, find the power supplied to the battery.

6 + 6 = 12

- 5. (a) Differentiate between Class C and Class D chopper with necessary waveforms.
 - (b) Derive an expression of ripple current for a boost chopper.
 - (c) A 1-phase fully controlled thyristor bridge converter supplies a load consisting of R, L and E. The inductance L is so large that the output current may be considered to be constant. Assume the SCR to be ideal with the following data:

Supply voltage = 220 V, Load Resistance = 0.5 ohm & L = 2 mH with output current = 10 A.

Determine: (i) firing angle, if $E_b = 145V$ (ii) firing angle, if $E_b = -145V$. 6 + 3 + 3 = 12

Group – D

- 6. (a) Explain the operation of single-phase half bridge inverter for R-L load, along with necessary circuit diagram and relevant waveforms.
 - (b) Explain the method of multiple pulse modulation with necessary equations.
 - (c) What are the parameters on the basis of which the performance of an inverter is evaluated?

4 + 5 + 3 = 12

- 7. (a) Explain the operation of three-phase VSI for 120^o mode of operation with waveforms for gate currents, phase voltages and line voltages.
 - (b) Differentiate between 180° and 120° mode of conduction for a three-phase VSI.

10 + 2 = 12

4