B.TECH/ BT/6TH SEM/ BIOT 3203/2018 BIOREACTOR DESIGN AND ANALYSIS (BIOT 3203)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) If Thiele parameter, Φ, is greater than 3 reactor will be
 (a)mass transfer controlling
 (b) reaction rate controlling
 (c) molecular diffusion controlling
 (d) intra-particle diffusion controlling.
 - (ii) The unit of 1st order rate constant
 (a) mol/L sec
 (b) mol/sec
 (c) 1/time
 (d) 1/mol.
 - (iii) Dispersion number is given by(a) D/UL(b) DU/L(c)DL/U(d) L/DU.
 - (iv) Non-ideal reactors are characterized by
 (a) Dispersion number
 (b) Peclet number
 (c) Schmidt number
 (d) Damkohler number.
 - (v) Monod model is an equation of which of the following types?
 (a) Linear
 (b) Nonlinear
 (c) Hyperbolic
 (d) Parabolic.
 - (vi) Sherwood Number is given by the expression

(a)
$$\frac{K_L d_f}{D_{AB}}$$
 (b) $\frac{K_L d_b}{D_{AB}}$ (c) $\frac{K_L L_C}{D}$ (d) $\frac{K_L \rho}{D_{AB}}$

(vii) If the rate is given as $-r_A = kC_A^{0.6}C_B^{0.4}$ then the molecularity and order of the reaction is

(a) 1 and 1 (b) 1 and 2 (c) 2 and 1 (d) 2 and 2.

B.TECH/ BT/6TH SEM/ BIOT 3203/2018

Damkohler number is a measure of (viii) (a) molecular diffusion (b) biochemical reaction (c) pore diffusion (d) both (a) and (b). Air-lift reactor is used for production of (ix) (b) penicillin G (a) alcohol (c) enzymes (d) monoclonal antibody. Microbial fermentation is best carried out for high yield of cell mass (x) bv (a) plug flow reactor (b) fed batch reactor (c) back-mixed reactor (d) fluidized bed reactor.

Group – B

- 2. (a) Derive rate equation for non-competitive inhibition (enzyme reaction) and show the result graphically.
 - (b) The following set of growth data is available for a new microorganism : t, hrs 0.0 0.5 1.0 1.5 2.0X, dry cell mass (gm/L) 0.10 0.15 0.23 0.34 0.51

The above set of data is to be fitted to the model : $dx/dt = kx (1 - \beta x)$

Where, $\beta = 1/x_s$ and x_s is the cell mass concentration in the stationary phase. Evaluate the constants k and β .

3 + 9 = 12

3. (a) Show that the following numbers are dimensionless.

(i) Prandtl number

(ii) Schmidt number

- (b) A value of $k_{LA} = 30$ per hour has been determined for a fermentor at its maximum practical agitator rotational speed and with air being sparged at 0.5 L gas/g dry weight per hour are to be cultured. The C_{CRIT} is 0.2 mg/L. The solubility of oxygen from air in the fermenter broth is 7.3 mg/L at 30°C.
 - (i) What maximum concentration of *E.coli* can be sustained in this bioreactor under aerobic condition?
 - (ii) What concentration could be maintained if pure oxygen was used to spurge the bioreactor?
- (c) A bioreactor has an oxygen mass transfer coefficient capability of 400 h^{-1.} What is the maximum concentration of *E*. coli that can be grown aerobically in this reactor? Respiration rate of *E.coli* is 0.35 g $O_2(g \text{ cell})^{-1}h^{-1}$. Critical oxygen concentration is 0.2 mg/L. Assume oxygen saturation with air to be 6.7 mg/L.

1

BIOT 3203

2

B.TECH/ BT/6TH SEM/ BIOT 3203/2018

Group – C

4. (a) Find the overall order of the irreversible reaction $2H_2 + 2NO \rightarrow N_2 + 2H_2 O$

from the following constant-volume data using equimolar amounts of hydrogen and nitric oxide :

Total pressure, mm Hg	200	240	280	320	360
Half-life, sec	265	186	115	104	67

(b) Find the first-order rate constant for the disappearance of A in the gas reaction $2A \rightarrow R$ if, on holding the pressure constant, the volume of the reaction mixture, starting with 80% A, decreases by 20% in three minutes.

C _A (mol/L)	0.017	0.015	0.013	0.01	0.008	0.005	0.003
t, (sec)	260	490	790	1470	2205	4470	8330

(b) Consider a gas phase, isothermal, zeroth order reaction A \rightarrow 3B. Initial concentration of A is 2 mol/L. Specific rate constant is 0.1 mol/L min. Final conversion required is 80%. In case of flow reactors, the volumetric flow rate to be used is 2 L/min. Calculate

i) time required in a constant volume batch reactor.

ii) volume required of a CSTR.

iii)volume required of a PFR.

Group – D

- 6. (a) What are the factors responsible for deviations from ideal plug flow in a tubular reactor?
- (b) Define Peclet number. What are the values of Peclet number for(i) ideal CSTR.(ii) ideal PFR.
- (c) A fluid reacts according to $A \rightarrow R$ as it flows through a vessel. Find the conversion of A for the flow pattern shown in the figure 1 with the following data:

 $C_{A0} = 1 \text{ mol/L}, -r_A = kC_A^{0.5}, k = 2 \text{ mol}^{0.5}/L^{0.5}.\text{min}.$

2+3+7=12

- 7. (a) Explain the significance of (D/UL) dispersion number.
 - (b) A large tank (860 liters) is used as a gas-liquid contactor. Gas bubbles up moves through the vessel and goes out through the top, liquid flows in at one part and goes out at the other at 5 L/sec. To get an idea of the flow pattern of liquid in this tank a pulse of tracer (M = 150 gm) is injected at the liquid inlet and measured at the outlet, as shown below.

- (i) Is this a properly done experiment?
- (ii) If so, find the liquid fraction in the vessel.
- (iii) Determine the E curve for the liquid.
- (iv) Qualitatively what do you think is happening in the vessel?

2 + 10 = 12

Group – E

8. (a) In a fluidized bed biofilm reactor with biofilms of average thickness L=0.5 mm carbon compound are to be removed. The feed flow rate and the conc. of carbon compound in the feed are F=2 L/hr and S_0 =2000mg/L. The diameter of the column, D=10 cm. The kinetic constants of the microbial population are

 R_m =50mg/cm³(hr) and K_s = 25 mg/cm³. The sp. Surface area of the biofilm in the reactor is a= 2.5 cm² /cm³ .

Assume first order kinetics and effectiveness factor, $\eta = 0.7$

Determine the required height of the column, if the effluent carbon concentration S = 100 $\rm mg/L$

(b) A stirred tank reactor is to be scaled down from 10 m³ to 0.1 m³. The dimension of the large tank are $D_t = 2$ m, $D_i = 0.5$ m, N=100 rpm. Determine the dimension of the small tank (D_t , D_i , and H) by using geometric similarity.

8 + 4 = 12

- 9. (a) What is a membrane bioreactor? What are the applications of membrane bioreactor? What are the major considerations of membrane bioreactor?
 - (b) Discuss the importance of mass transfer coefficient and heat transfer coefficient for a bubble column reactor.

(2+2+4)+4 = 12

3

4