B.TECH/ CSE /4TH SEM/ MATH 2202/2018 PROBABILITY AND NUMERICAL METHODS (MATH 2202)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) If P(A) = 0.5, $P(A \cap B^c) = 0.4$, then $P(A \cap B) =$ (a) 0.3 (b) 0.9 (c) 0.1 (d) 0.7.
 - (ii) If the probability of a screw being defective is p = 0.015, then the probability that a box of 100 screws does not contain a defective one is

(a) $1 - (0.015)^{100}$ (b) $(0.985)^{100}$ (c) $(0.015)^{100}$ (d) $1 - (0.985)^{100}$

- (iii) $(\Delta \nabla)x^2$ is equal to (a) h^2 (b) $-2h^2$ (c) $2h^2$ (d) h^{20} .
- (iv) We wish to solve $x^2 2 = 0$ by Newton-Raphson technique. If initial guess is $x_0 = 1$, then the immediate estimate of x (*i.e.*, x_1) will be (a) 1.414 (b) 1.5 (c) 0 (d) -1.
- (v) Which of the following matrices is a probability transition matrix ?

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{3} & 0 & \frac{1}{6} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{2}{3} & \frac{1}{3} \\ \frac{3}{4} & 0 & \frac{1}{4} \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 2 & -1 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 \end{bmatrix}$ (d) $\begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$

(vi) If $\frac{dy}{dx} = x + y$ and y(1) = 0, then y(1.1) by Euler's method is[h = 0.1]: (a) 0.1 (b) 0.3 (c) 0.5 (d) 0.9.

B.TECH/ CSE /4TH SEM/ MATH 2202/2018

- Condition for convergence of Newton- Raphson method is (vii) (a) $|f(x) f'(x)| < {f''(x)}^2$ (b) $|f(x) f''(x)| < {f'(x)}^2$ (c) $|f(x) f'(x)| > {f''(x)}^2$ (d) $|f(x) f''(x)| > {f'(x)}^2$ The probability of obtaining the sum as 10, when two dice are (viii) thrown is (a) 3/36 (b)2/36(c) 1/36 (d) 5/36. The function $f(x, y) = \begin{cases} kxy(x + y), & 0 \le x \le 1, \\ 0, & elsewhere \end{cases}$ can be (ix) a p.d.f. if the value of is (a) 3 (b) -3 (c)1/3 (d) 2. The degree of precision of Simpson's one-third rule is (x)
 - (a) 1 (b) 2 (c) 3 (d) 5.

Group – B

- 2. (a) Find the root of the equation $x^3 5x 7 = 0$ that lies between 2 and 3 using Regula-Falsi method correct up to 2 significant figures.
- (b) Does the following system of equations satisfy the sufficient conditions for the convergence of Gauss-Seidel iterative method?
 -x₂ x₃ + 6x₁ = 11.33
 -x₁ x₃ + 6x₂ = 32
 -x₂ x₁ + 6x₃ = 42

If it satisfies, then use the method to solve the system of equations (Perform 3 iterative steps).

6 + 6 = 12

3. (a) Compute f(0.23), from the following table, by using Newton Forward interpolation formula, correct up to three decimal places.

x	0.20	0.22	0.24	0.26	0.28	0.30
f(x)	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

(b) Evaluate $\int_0^{0.6} x \sin x^2 dx$, using Trapezoidal method by taking h = 0.1 correct up to five decimal places.

7 + 5 = 12

2

Group – C

- 4. (a) A number is randomly chosen from the set { 1, 2, 3,, 99, 100 }. Find the probability that the number is divisible by 2 or 3. What is the probability that a number is divisible by 2 given that it is divisible by 3?
- Two unbiased dice are thrown. Find the conditional probability that two (b) fives occur if it is known that the total sum is divisible by 5?
- Prove that if *A* and *B* are independent events then A^c and B^c are also (c) independent.

6 + 3 + 3 = 12

- When a computer goes down, there is a 75% chance that it is due to an 5. (a) overload and a 15% chance that it is due to a software problem. There is an 85% chance that it is due to an overload or software problem. What is the probability that both of these problems are at fault? What is the probability that there is a software problem but no overload?
 - Assume that 95% of all cryptographic messages are authentic. (b) Furthermore, assume that only 0.1% of all unauthentic messages are sent using the correct key and that all authentic messages are sent using the correct key. Find the probability that a message is authentic given that the correct key is used.
 - Two dice are thrown. What is the probability that the product of the (c) numbers appearing in the two faces is an even number?

4 + 5 + 3 = 12

Group - D

- 6. (a) If the weekly wage of 10,000 workers in a factory follows normal distribution with mean and standard deviation Rs. 70 and Rs. 5 respectively, find the number of workers whose weekly wages are
 - (i) between Rs. 66 and Rs. 72
 - (ii) less than Rs. 66
 - (iii) more than Rs. 72
- Suppose a biased coin has probability of 0.7 of getting a head. The coin (b) is tossed 3 times. Let *X* = Number of heads that appear in 3 tosses. Find the possible values that *X* can take and find its probability mass function. Find E(X).

6 + 6 = 12

- A fair coin is tossed 5 times. Find the probability that there are 7.(a)
 - (i) exactly 2 tails
 - (ii) at most 2 tails
 - (iii) at least 2 tails
 - (iv) fewer than 2 tails

B.TECH/ CSE /4TH SEM/ MATH 2202/2018

- (b) If a ticket office can serve at most 4 customers per minute and the average number of customers is 120 per hour, what is the probability that during a given minute customers will have to wait?
- (c) For two random variables X and Y with the same mean, the two regression lines are y = ax + b and $x = ay + \beta$.

Show that
$$\frac{b}{\beta} = \frac{1-a}{1-\alpha}$$

Group – E

- 8. (a) A fair coin is tossed three times. Let X denote the number of heads in three tossings and Y denote the absolute difference between the number of heads and the number of tails. Find the joint p.m.f. of (X,Y). Also find the marginal p.m.f. of X and Y. Are these two random variables X and Y independent?
 - The joint distribution of X and Y is given by (b)

$$f(x,y) = \begin{cases} \frac{1}{2}, & \text{if } (x,y) \in \mathcal{R} \\ 0, & \text{otherwise} \end{cases}$$

Where \mathcal{R} is the interior of the triangle of area 2 square units having vertices (0,0), (2,0) and (1,2). Find the marginal density function of X. Also find $P(X \le 1, Y \le 1)$.

7 + 5 = 12

- 9. (a) A computer system can operate in two different modes, Mode-I and Mode-II. Every hour it remains in the same mode or switches to a different mode according to the transition probability matrix
 - $P = \begin{bmatrix} 0.4 & 0.6 \\ 0.6 & 0.4 \end{bmatrix}$

 - (i) Compute the 2-step transition probability matrix.
 - (ii) If the system is in Mode-I at 5:30 pm, what is the probability that it will be in Mode-I at 8:30 pm on the same day?
 - (b) A communication system transmits the two digits 0 and 1, each of them passing through several stages. Suppose that the probability, that the digit that enters remains unchanged when it leaves, is p and that it changes is q = 1 - p. Suppose further that X_0 is the digit which enters the first stage of the system and X_n , $n \ge 1$ is the digit 0 leaving the nth stage of the system. Then calculate and $P(X_2 = 0 | X_0 = 1)$ and $P(X_3 = 1 | X_0 = 0).$

MATH 2202

3

4