B.TECH/ CSE /4TH SEM/ MATH 2201/2018 NUMBER THEORY AND ALGEBRAIC STRUCTURES (MATH 2201)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$

(i)	Which of the following is not an associative binary operation?	
	(a) matrix addition	(b) arithmetical addition
	(c) matrix multiplication	(d) arithmetical subtraction.

- (ii) If x is an element of a group G and O(x)=5, then (a) $O(x^{10}) = 5$ (b) $O(x^{15}) = 5$ (c) $O(x^{23}) = 5$ (d) $O(x^{20}) = 5$.
- (iii) Define a relation on the set of integers Z such that *aRb* "iff " a b is even. Then *R* is
 (a) reflexive only
 (b) reflexive and symmetric only
 (c) symmetric and transitive only
 (d) an equivalence relation.
- (iv) If the cyclic group G contains 12 distinct elements then the number of generators of the group is

(a) 1 (b) 2 (c) 3 (d) 4.

- (v) Which of the following permutations is a cycle? (a) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 3 \end{pmatrix}$.
- (vi) Index of a subgroup H of a group G is 5 and its order is 3. The order of the group G is

(a) 8 (b) 10 (c) 15 (d) 25.

B.TECH/ CSE /4TH SEM/ MATH 2201/2018

- (vii)Let $G = \mathbb{Z}$. The mapping $f: (G, +) \to (G, +)$ defined by f(x) = x + 2 is(a) homomorphism(b) epimorphism(c) not homomorphism(d) isomorphism.(viii)If a divides c and b divides c with gcd(a,b) = 1 then(a) c divides ab(b) ab divides c(c) gcd(a,c)=1(d) gcd(a,c)=2.
 - (ix) Which of the following is an example of non-commutative ring?
 - (a) Residue class ring modulo 6 (b) 2 × 2 matrices over a field
 - (c) The ring of Gaussian integers
 (d) All of above three.
 (x) τ (1482)=

Group – B

2. (a) Solve the following system of linear congruence by using Chinese Remainder Theorem:

 $x \equiv 3 \pmod{7}$ $x \equiv 5 \pmod{9}$ $x \equiv 4 \pmod{5}$

(b) Define distributive lattice. Give an example. Is the lattice with the following Hasse diagram distributive? Justify.

6 + (2 + 2 + 2) = 12

- 3. (a) Using theory of congruence, find the remainder when $2^{73} + 14^3$ is divided by 11.
 - (b) Let D_{30} be the set of all positive divisors of 30. Define a relation ' \leq ' on D_{30} given by " $x \leq y$ if and only if x divides y", $x,y \in D_{30}$. Prove that (D_{30}, \leq) is a poset. Draw the Hasse diagram of the poset.

6 + 6 = 12

1

2

B.TECH/ CSE /4TH SEM/ MATH 2201/2018

Group – C

- 4. (a) Determine whether the set P(X) of all subsets of a non-empty set X, under * defined by $A * B = A \cup B$, $A, B \in P(X)$ forms a group.
- (b) Let S be a set having n elements. How many distinct binary operations can be defined on S? Explain your answer.
- (c) Show that the following four matrices form a group under matrix multiplication:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

4 + 4 + 4 = 12

- 5. (a) Show that the permutation $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ is even, while the permutation $\begin{pmatrix} 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 3 \end{pmatrix}$ is odd.
 - (b) Find the images of the elements 3 and 4, if $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & & & 4 \end{pmatrix}$ be an odd permutation.
 - (c) If a is a permutation given by $(1 \ 2 \ 3 \ 4)$, then show that the set $\{a, a^2, a^3, a^4\}$ forms a cyclic group.

3 + 3 + 6 = 12

Group – D

- 6. (a) State and prove Lagrange's theorem regarding the order of a subgroup of a finite group.
- (b) If a be an element of order n in a group and p be prime to n, then a^p is also of order n.

6 + 6 = 12

- 7. (a) Prove that two left cosets of H in a group G have the same cardinality.
 - (b) Prove that every group of order less than 6 is abelian.

6 + 6 = 12

Group – E

- 8. (a) Prove that \mathbb{Z}_8 is not a homomorphic image of \mathbb{Z}_{15} .
 - (b) Define unit in a ring *R* with unity. In the ring $(\mathbb{Z}_n, +;)$ prove that an element \overline{m} is a unit implies gcd(m, n)=1.

6 + 6= 12

- 9. (a) Let R be a commutative ring with unity of characteristic 3. Compute and simplify $(a + b)^9$ for $a, b \in R$.
 - (b) Prove that the set of matrices $\left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}$ is a subring of $M_2(\mathbb{Z})$.
 - (c) Prove that the cancellation law holds in a ring R iff R has no divisors of zero.

3 + 3 + 6 = 12

3