M.TECH/CSE/1st SEM/MATH 5102/2017 ADVANCED DISCRETE MATHEMATICS (MATH 5102)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

<u>Any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A

(Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1=10$

(i)	For all natural number <i>n</i> , the number $n^2 + n$ is	
	(a) even	(b) odd
	(c) prime	(d) irrational.

- (ii) The greatest element in { 1, 2, 3, 4, 6, 12, 18 } with respect to divisibility is
 (a) 12
 (b) 18
 (c) 6
 (d) there exists no greatest element.
- (iii) The relation *a* divides *b* on the set of integers is
 (a) equivalent relation
 (b) partial order relation
 (c) symmetric
 (d) none of these.
- (iv) Total number of non-negative integral solutions to the equation x + y + z = 17, x, y, $z \ge 0$ is (a) 171 (b) 170
 - (c) 169 (d) None of these.
- (v) If $17 \equiv 7 \pmod{p}$, then p can be (a) 5 (b) 6 (c) 7 (d) 17.
- (vi) The function $\frac{2}{1-2x} + \frac{1}{1-x}$ generates the sequence $\{a_n\}$ where a_n is equal to

(a) $2^{n+1} + 1$ (b) $2^n + 1$ (c) $2^{n+1} - 1$ (d) $2^n - 1$.

(vii) The sum of the co-efficient in the expansion of $(x + y + z)^{10}$ is (a) 2^{10} (b) 2^{9} (c) 3^{10} (d) 3^{9} .

M.TECH/CSE/1st SEM/MATH 5102/2017

(viii) A tree has 4 vertices of degree 2, 3 vertices of degree 3, 3 vertices of degree 4. How many pendant vertices the tree should have? (a)11 (b)10 (c) 9(d)12 (ix) Clique number for a complete graph K_n with *n* vertices is (a) 0 (b) 1 (c) 2 (d) n The chromatic number of the Kuratowski's first graph is (x) (c) 5 (a) 3 (b) 4 (d) none of these.

Group - B

- 2. (a) Let R be a binary relation on the set of all strings of 0's and 1's such that R = {(a, b) : a & b are strings that have same number of 0's}. Is R reflexive, symmetric, transitive or a partial order relation?
 - (b) Let A = $\{1, 2, 3, 5, 30\}$ and $a\rho b$ if and only if a divides *b*.Find the greatest and least element.
 - (c) Let D_m denote the positive divisors of m ordered by divisibility. Draw the Hasse diagram of (i) D_{15} (ii) D_{16} .

5 + 2 + 5 = 12

- 3. (a) Let A = {1, 2, 3, 4, 5, 6, 7}. Determine a relation *R* on A by $aRb \Leftrightarrow 3$ divides (a b). Show that *R* is an equivalence relation. Also determine the partitions generated by *R*.
 - (b) Let *S* be any non empty set and P(S) be its power set. Show that $(P(S), \subseteq)$ is a lattice.

6 + 6 = 12

Group - C

- 4. (a) Use Mathematical induction to prove that $(3 + \sqrt{7})^n + (3 \sqrt{7})^n$ is an even integer $\forall n \in N$.
 - (b) If *a* is prime to *b*, then prove that a^2 is prime to *b*.
 - (c) Use division algorithm to prove that the square of an odd integer is of the form 8k +1, where k is an integer.

5 + 2 + 5 = 12

MATH 5102

2

1

M.TECH/CSE/1ST SEM/MATH 5102/2017

- 5. (a) Use Euclidean algorithm **Group** find integers u and v such that gcd(63, 55) = 63u + 55v.
- 8. [a] State and prove Euler's Theorem for planar Graph.
 - (b) Using(DetGrap prosition of head, the name, f(not then); here at i ≠ po(hynodimia) of the follow(inig); f(rap th:b (mod m), and c ≡ d (mod m), then (a +
- (c) Prove that $19^{20} \equiv 1$ 6. (a) A person writes 1 corresponding envelopes in now many ways can the latters be placed
- corresponding envelopes. In now many ways can the letters be placed in the envelopes so that 6+6=12
 - (i) all the letters are in the wrong envelopes.
- 9. (a) (ii) beter at least two of them are in the wrong envelopes.
 - (b) Find the number of permutations that can be had made from the letters of the word DAUGHTER.
 - (i) taking al
 - (ii) begining
 - (iii) begining
 - (iv) vowels k
 - (v) not all v

VI

- (b) Prove that a graph (with at least one edge) is 2-chromatia if and graph if it has no circuits of odd length.
- 7. (a) where the insertice relation $M_{n,n} = 3^n$, $n \ge 0$.
 - (b) Determine the number of integers between 1 and 10,000,000 (both inclusive) having the sum of digits equal to 18.

6 + 6 = 12