M.TECH/CSE/2ND SEM/CSEN 5222/2015 **2015**

Web Intelligence and Algorithms (CSEN 5222)

Time Allotted : 3 hrs Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) If H is the web or hyperlink matrix, then the pagerank vector
 - (a) Is an eigenvector of H with eigenvalue 0.5
 - (b) is an eigenvector of H with eigenvalue 1
 - (c) is not an eigenvector of H
 - (d) not an eigenvector.
- (ii) A vocabulary consists of words {aa, bb, cc, dd}. Article1 has two occurences of aa, two of bb and one occurence of dd, the the normalized vector associated with Article1 for the purpose of similarity computation is
 - (a) (2/3, 2/3, 0, 1/3)
 - (b) (4/3, 4/3, 0, 1/3)
 - (c) (4/9, 4/9, 0, 1/9)
 - (d) (2, 2, 0, 1).
- (iii) For a binary classification problem, if TP denotes the number of true positives and FP denotes the number of false positives, then TP/(TP+FP) denotes
 - (a) Precision
 - (b) Recall
 - (c) Accuracy
 - (d)F-Score.
- (iv) Which of the following is a process of classification based on user-generated tags?
 - (a) taxonomy
 - (b) ontology
 - (c) folksonomy
 - (d) tag cloud.
- (v) If the hyperlink matrix stores probabilities on outgoing links in the rows and those on incoming links along the columns, then
 - (a) the rows add up to 1
 - (b) the columns add up to 1
 - (c) both the rows and columns add up to 1
 - (d) neither the rows nor the columns add up to 1.

M

.TECH/CSE/2 ND SI	EM/CSEN 5222/20	015	
	•	_	ns, subtract column averages tem-item similarity, we are
(a) Cosine simi	larity	(b) Pearson's s	imilarity
~ ~	osine similarity	(d) None of the	5
	_	•	city adjustment, if a node has such outlink is visited with
(a) 0.8	(b) 0.2	(c) 0.16	(d) 0.25.
(viii) Which of these (a) Apache Mal (b) WEKA (c) BigML (d) Google Pred		ports decision tree	based models?
and travel penal (a) non-spatial	tion of ratings and ite ty techniques are use ratings for non-spati	d to generate recom al items	rstem, both user partitioning amendations?

- (b) non-spatial ratings for spatial items
- (c) spatial ratings for non-spatial items
- (d) spatial ratings for spatial items.
- (x) Which of the following is NOT a hierarchical agglomerative clutsering algorithm?
 - (a) k-Means
 - (b) ROCK
 - (c) MST
 - (d) single link.

Group - B

- 2.(a) Consider the directed graph G = (V,E), $V = \{y, a, m\}$, $E = \{(y,y), (y, a), (a, y), (a, m), (m, y), (m, y),$ a)}. Define the Hyperlink Matrix H(i,j) for the directed graph of web pages given above. Define the initial pagerank vector of (1/3, 1/3, 1/3) and show the vector after 1 and 2 iterations, applying the power iteration method.
 - (b) Define the Google Matrix G by modifying H in (a) above with stochasticity adjustment.
 - (c) Modify G further using the *primitivity adjustment* with $\alpha = 0.8$.

6+3+3=12

- 3.(a) Suggest four approaches to Intelligent Search.
 - (b) Why is the Power Iteration method preferred to Gaussian Elimination?
 - (c) What are spider traps and how are they tackled in the pagerank algorithm?

4+4+4=12

M.TECH/CSE/2ND SEM/CSEN 5222/2015

Group - C

4.(a) Consider the following ratings table and fill in the missing value using the prediction function:

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

where sim(a,b) denotes Pearson's similarity and N denotes the two best neighbors.

Items→	Item1	Item2	Item3	Item4	Item5
Users↓					
A	5	3	4	4	?
В	3	1	2	3	3
С	4	3	4	3	5
D	3	3	1	5	4
Е	1	5	5	2	1

(b) Explain how you may use association rule mining to predict if user A will buy item 5? **6+6=12**

5.(a) Consider the following table and build a decision tree classifier to predict whether a user will buy an item.

Attributes→	Attr1	Attr2	Attr3	Buy?
Users↓				
A	F	T	T	F
В	Т	F	T	F
B	1	I	1	I.
С	T	T	F	Т
D	T	T	F	F
E	т	т	т	т
E	Т	T	T	T

(b) What is the cold start problem in rating based systems and how is it tackled?

8+4=12

Group - D

- 6.(a) Explain the key features of collaborative, content-based and knowledge-based paradigms of recommender systems.
 - (b) What is the essential difference between *parallel* and *pipelined* hybridization strategies for hybrid recommender systems?
 - (c) How is the cold-start problem in rating based recommender systems tackled?

4+4+4=12

M.TECH/CSE/2ND SEM/CSEN 5222/2015

- 7.(a) Explain how activation is spread using a graph based approach to recommendation.
 - (b) Given that the keyword "collaborative" occurs in a document D, 15 times and there are 1000 documents and the keyword occurs in 10 documents. What is the TF-IDF score for the keyword in document D? (Take *log* to the base 10)
 - (c) If you had 1,000 users and 1,00,000 items, which one of i) user-based collaborative filtering ii) item-based collaborative filtering would you use? Explain.

4+4+4=12

Group - E

8.(a) Consider the following ratings table and fill in the missing value using association rule mining.

Items→	Item1	Item2	Item3	Item4	Item5
Users↓					
A	5	3	4	4	?
В	3	1	2	3	3
С	4	3	4	3	5
D	3	3	1	5	4
Е	1	5	5	2	1

(b) Explain what is meant by the term "semantic web"?

8+4=12

9.(a) If {1, 2, 3} and {2, 3, 4} are the only frequent 3-itemsets, state the status for each one of the following sets (whether it is or is not a frequent itemset or you cannot be certain if it is a frequent itemset or not).

i.{1} ii.{1, 2} iii.{1, 4} iv.{1, 2, 3, 4} v.{1, 3, 4}

- (b) Name and state the property used to determine the answers in (a) above.
- (c) Assume that the confidence of the decision rule, 1-> 2, is 100%. Is the confidence of the decision rule, 2-> 1, also 100%? Give an example of data to justify your answer.

5+3+4=12